{"title":"基于子空间的快速源定位方法","authors":"J. Marot, C. Fossati, S. Bourennane","doi":"10.1109/SAM.2008.4606855","DOIUrl":null,"url":null,"abstract":"Source localization is based on the spectral matrix algebraic properties. Propagator, and Ermolaev-Gershman (EG) noneigenvector algorithms exhibit a low computational load. Propagator is based on spectral matrix partitioning. EG algorithm obtains an approximation of noise subspace using an adjustable power parameter of the spectral matrix and choosing a threshold value. In this paper, we aim at demonstrating the usefulness of QR and LU factorizations of the spectral matrix to improve these methods. Experiments show that the modified propagator and EG algorithms based on factorized spectral matrix lead to better localization results, compared to the existing methods.","PeriodicalId":422747,"journal":{"name":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Fast subspace-based source localization methods\",\"authors\":\"J. Marot, C. Fossati, S. Bourennane\",\"doi\":\"10.1109/SAM.2008.4606855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Source localization is based on the spectral matrix algebraic properties. Propagator, and Ermolaev-Gershman (EG) noneigenvector algorithms exhibit a low computational load. Propagator is based on spectral matrix partitioning. EG algorithm obtains an approximation of noise subspace using an adjustable power parameter of the spectral matrix and choosing a threshold value. In this paper, we aim at demonstrating the usefulness of QR and LU factorizations of the spectral matrix to improve these methods. Experiments show that the modified propagator and EG algorithms based on factorized spectral matrix lead to better localization results, compared to the existing methods.\",\"PeriodicalId\":422747,\"journal\":{\"name\":\"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM.2008.4606855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2008.4606855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Source localization is based on the spectral matrix algebraic properties. Propagator, and Ermolaev-Gershman (EG) noneigenvector algorithms exhibit a low computational load. Propagator is based on spectral matrix partitioning. EG algorithm obtains an approximation of noise subspace using an adjustable power parameter of the spectral matrix and choosing a threshold value. In this paper, we aim at demonstrating the usefulness of QR and LU factorizations of the spectral matrix to improve these methods. Experiments show that the modified propagator and EG algorithms based on factorized spectral matrix lead to better localization results, compared to the existing methods.