基于子空间的快速源定位方法

J. Marot, C. Fossati, S. Bourennane
{"title":"基于子空间的快速源定位方法","authors":"J. Marot, C. Fossati, S. Bourennane","doi":"10.1109/SAM.2008.4606855","DOIUrl":null,"url":null,"abstract":"Source localization is based on the spectral matrix algebraic properties. Propagator, and Ermolaev-Gershman (EG) noneigenvector algorithms exhibit a low computational load. Propagator is based on spectral matrix partitioning. EG algorithm obtains an approximation of noise subspace using an adjustable power parameter of the spectral matrix and choosing a threshold value. In this paper, we aim at demonstrating the usefulness of QR and LU factorizations of the spectral matrix to improve these methods. Experiments show that the modified propagator and EG algorithms based on factorized spectral matrix lead to better localization results, compared to the existing methods.","PeriodicalId":422747,"journal":{"name":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Fast subspace-based source localization methods\",\"authors\":\"J. Marot, C. Fossati, S. Bourennane\",\"doi\":\"10.1109/SAM.2008.4606855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Source localization is based on the spectral matrix algebraic properties. Propagator, and Ermolaev-Gershman (EG) noneigenvector algorithms exhibit a low computational load. Propagator is based on spectral matrix partitioning. EG algorithm obtains an approximation of noise subspace using an adjustable power parameter of the spectral matrix and choosing a threshold value. In this paper, we aim at demonstrating the usefulness of QR and LU factorizations of the spectral matrix to improve these methods. Experiments show that the modified propagator and EG algorithms based on factorized spectral matrix lead to better localization results, compared to the existing methods.\",\"PeriodicalId\":422747,\"journal\":{\"name\":\"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM.2008.4606855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2008.4606855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

源定位是基于谱矩阵的代数性质。传播算子和Ermolaev-Gershman (EG)非特征向量算法具有较低的计算负荷。传播器是基于谱矩阵划分的。EG算法通过谱矩阵的可调功率参数和阈值的选择获得噪声子空间的近似。在本文中,我们旨在证明谱矩阵的QR分解和LU分解对改进这些方法的有用性。实验表明,与现有方法相比,改进的传播算子和基于分解谱矩阵的EG算法具有更好的定位效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast subspace-based source localization methods
Source localization is based on the spectral matrix algebraic properties. Propagator, and Ermolaev-Gershman (EG) noneigenvector algorithms exhibit a low computational load. Propagator is based on spectral matrix partitioning. EG algorithm obtains an approximation of noise subspace using an adjustable power parameter of the spectral matrix and choosing a threshold value. In this paper, we aim at demonstrating the usefulness of QR and LU factorizations of the spectral matrix to improve these methods. Experiments show that the modified propagator and EG algorithms based on factorized spectral matrix lead to better localization results, compared to the existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信