可扩展推荐系统:机器学习与搜索的结合

Si Ying Diana Hu, Joaquin Delgado
{"title":"可扩展推荐系统:机器学习与搜索的结合","authors":"Si Ying Diana Hu, Joaquin Delgado","doi":"10.1145/2792838.2792842","DOIUrl":null,"url":null,"abstract":"This tutorial provides an overview of how search engines and machine learning techniques can be tightly coupled to address the need for building scalable recommender or other prediction-based systems. In particular, we will review ML-Scoring, an open source framework, created by the authors that tightly integrates machine-learning models into Elasticsearch, a popular search engine that is distributed, scalable, highly available with real-time search and analytic functionalities. The fundamentals and basic methods in information retrieval and machine learning will be explained. Accompanying the theory, practical examples will illustrate their applications with a series of hands-on exercises. These will demonstrate how to load a dataset into Elasticsearch, how to train a model in an external software framework such as Spark, Weka, or R, and finally how to load the trained models as a ML-Scoring plugins created for Elasticsearch.","PeriodicalId":325637,"journal":{"name":"Proceedings of the 9th ACM Conference on Recommender Systems","volume":"259 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Scalable Recommender Systems: Where Machine Learning Meets Search\",\"authors\":\"Si Ying Diana Hu, Joaquin Delgado\",\"doi\":\"10.1145/2792838.2792842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This tutorial provides an overview of how search engines and machine learning techniques can be tightly coupled to address the need for building scalable recommender or other prediction-based systems. In particular, we will review ML-Scoring, an open source framework, created by the authors that tightly integrates machine-learning models into Elasticsearch, a popular search engine that is distributed, scalable, highly available with real-time search and analytic functionalities. The fundamentals and basic methods in information retrieval and machine learning will be explained. Accompanying the theory, practical examples will illustrate their applications with a series of hands-on exercises. These will demonstrate how to load a dataset into Elasticsearch, how to train a model in an external software framework such as Spark, Weka, or R, and finally how to load the trained models as a ML-Scoring plugins created for Elasticsearch.\",\"PeriodicalId\":325637,\"journal\":{\"name\":\"Proceedings of the 9th ACM Conference on Recommender Systems\",\"volume\":\"259 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th ACM Conference on Recommender Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2792838.2792842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2792838.2792842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本教程概述了如何将搜索引擎和机器学习技术紧密结合起来,以满足构建可扩展的推荐或其他基于预测的系统的需求。特别地,我们将回顾ML-Scoring,这是一个开源框架,由作者创建,将机器学习模型紧密集成到Elasticsearch中,Elasticsearch是一个流行的搜索引擎,具有分布式,可扩展,高可用性,具有实时搜索和分析功能。将解释信息检索和机器学习的基本原理和基本方法。伴随着理论,实际的例子将通过一系列的动手练习来说明它们的应用。这些将演示如何将数据集加载到Elasticsearch中,如何在外部软件框架(如Spark, Weka或R)中训练模型,最后如何将训练好的模型作为为Elasticsearch创建的ml评分插件加载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable Recommender Systems: Where Machine Learning Meets Search
This tutorial provides an overview of how search engines and machine learning techniques can be tightly coupled to address the need for building scalable recommender or other prediction-based systems. In particular, we will review ML-Scoring, an open source framework, created by the authors that tightly integrates machine-learning models into Elasticsearch, a popular search engine that is distributed, scalable, highly available with real-time search and analytic functionalities. The fundamentals and basic methods in information retrieval and machine learning will be explained. Accompanying the theory, practical examples will illustrate their applications with a series of hands-on exercises. These will demonstrate how to load a dataset into Elasticsearch, how to train a model in an external software framework such as Spark, Weka, or R, and finally how to load the trained models as a ML-Scoring plugins created for Elasticsearch.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信