回归模型中未观察到的异质性:基于非线性筛子的半参数方法

M. C. Medeiros, Priscilla Burity, J. Assunção
{"title":"回归模型中未观察到的异质性:基于非线性筛子的半参数方法","authors":"M. C. Medeiros, Priscilla Burity, J. Assunção","doi":"10.12660/BRE.V35N12015.24305","DOIUrl":null,"url":null,"abstract":"This paper proposes a semiparametric approach to control for unobserved heterogeneity in linear regression models, based on an artificial neural network extremum estimator. We present a procedure to specify the model and use simulations to evaluate its finite sample properties in comparison to alternative methods. The simulations show that our approach is less sensitive to increases in the dimensionality and complexity of the problem. We also use the model to study convergence of per capita income across Brazilian municipalities.","PeriodicalId":332423,"journal":{"name":"Brazilian Review of Econometrics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unobserved Heterogeneity in Regression Models: A Semiparametric Approach Based on Nonlinear Sieves\",\"authors\":\"M. C. Medeiros, Priscilla Burity, J. Assunção\",\"doi\":\"10.12660/BRE.V35N12015.24305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a semiparametric approach to control for unobserved heterogeneity in linear regression models, based on an artificial neural network extremum estimator. We present a procedure to specify the model and use simulations to evaluate its finite sample properties in comparison to alternative methods. The simulations show that our approach is less sensitive to increases in the dimensionality and complexity of the problem. We also use the model to study convergence of per capita income across Brazilian municipalities.\",\"PeriodicalId\":332423,\"journal\":{\"name\":\"Brazilian Review of Econometrics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Review of Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12660/BRE.V35N12015.24305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Review of Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12660/BRE.V35N12015.24305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于人工神经网络极值估计的半参数方法来控制线性回归模型中不可观测的异质性。我们提出了一个程序来指定模型,并使用模拟来评估其有限样本属性与替代方法的比较。仿真结果表明,该方法对问题的维数和复杂度的增加不太敏感。我们还使用该模型来研究巴西各城市人均收入的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unobserved Heterogeneity in Regression Models: A Semiparametric Approach Based on Nonlinear Sieves
This paper proposes a semiparametric approach to control for unobserved heterogeneity in linear regression models, based on an artificial neural network extremum estimator. We present a procedure to specify the model and use simulations to evaluate its finite sample properties in comparison to alternative methods. The simulations show that our approach is less sensitive to increases in the dimensionality and complexity of the problem. We also use the model to study convergence of per capita income across Brazilian municipalities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信