约束随机梯度下降:良好实践

S. Roy, Mehrtash Harandi
{"title":"约束随机梯度下降:良好实践","authors":"S. Roy, Mehrtash Harandi","doi":"10.1109/DICTA.2017.8227420","DOIUrl":null,"url":null,"abstract":"Stochastic Gradient Descent (SGD) is the method of choice for large scale problems, most notably in deep learning. Recent studies target improving convergence and speed of the SGD algorithm. In this paper, we equip the SGD algorithm and its advanced versions with an intriguing feature, namely handling constrained problems. Constraints such as orthogonality are pervasive in learning theory. Nevertheless and to some extent surprising, constrained SGD algorithms are rarely studied. Our proposal makes use of Riemannian geometry and accelerated optimization techniques to deliver efficient and constrained-aware SGD methods.We will assess and contrast our proposed approaches in a wide range of problems including incremental dimensionality reduction, karcher mean and deep metric learning.","PeriodicalId":194175,"journal":{"name":"2017 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Constrained Stochastic Gradient Descent: The Good Practice\",\"authors\":\"S. Roy, Mehrtash Harandi\",\"doi\":\"10.1109/DICTA.2017.8227420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stochastic Gradient Descent (SGD) is the method of choice for large scale problems, most notably in deep learning. Recent studies target improving convergence and speed of the SGD algorithm. In this paper, we equip the SGD algorithm and its advanced versions with an intriguing feature, namely handling constrained problems. Constraints such as orthogonality are pervasive in learning theory. Nevertheless and to some extent surprising, constrained SGD algorithms are rarely studied. Our proposal makes use of Riemannian geometry and accelerated optimization techniques to deliver efficient and constrained-aware SGD methods.We will assess and contrast our proposed approaches in a wide range of problems including incremental dimensionality reduction, karcher mean and deep metric learning.\",\"PeriodicalId\":194175,\"journal\":{\"name\":\"2017 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2017.8227420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2017.8227420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

随机梯度下降(SGD)是解决大规模问题的首选方法,尤其是在深度学习中。近年来研究的目标是提高SGD算法的收敛性和速度。在本文中,我们为SGD算法及其高级版本提供了一个有趣的特征,即处理约束问题。诸如正交性等约束在学习理论中是普遍存在的。然而,在某种程度上令人惊讶的是,约束SGD算法很少被研究。我们的建议利用黎曼几何和加速优化技术来提供高效和约束感知的SGD方法。我们将在广泛的问题中评估和对比我们提出的方法,包括增量降维、karcher均值和深度度量学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constrained Stochastic Gradient Descent: The Good Practice
Stochastic Gradient Descent (SGD) is the method of choice for large scale problems, most notably in deep learning. Recent studies target improving convergence and speed of the SGD algorithm. In this paper, we equip the SGD algorithm and its advanced versions with an intriguing feature, namely handling constrained problems. Constraints such as orthogonality are pervasive in learning theory. Nevertheless and to some extent surprising, constrained SGD algorithms are rarely studied. Our proposal makes use of Riemannian geometry and accelerated optimization techniques to deliver efficient and constrained-aware SGD methods.We will assess and contrast our proposed approaches in a wide range of problems including incremental dimensionality reduction, karcher mean and deep metric learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信