降低TLB电源需求

Toni Juan, T. Lang, J. Navarro
{"title":"降低TLB电源需求","authors":"Toni Juan, T. Lang, J. Navarro","doi":"10.1145/263272.263332","DOIUrl":null,"url":null,"abstract":"Translation look-aside buffers (TLBs) are small caches to speed-up address translation in processors with virtual memory. This paper considers two issues: (1) a comparison of the power consumption of fully-associative, set-associative, and direct mapped TLBs for the same miss rate and (2) the proposal of modifications of the basic cells and of the structure of set-associative TLBs to reduce the power. The power evaluation is done using a model and the miss rates are obtained from simulations of the SPEC92 benchmark. With respect to (1) we conclude that for small TLBs (high miss rates) fully-associative TLBs consume less power but for larger TLBs (low miss rates) set-associative TLBs are better. Moreover, the proposed modifications produce significant reductions in power consumption. Our evaluations show a reduction of 40 to 60% compared to the best traditional TLB. The proposed TLB implementation produces an increase in delay and in area. However, these increases are tolerable because the cycle time is determined by the slower cache and because the TLB area corresponds to only a small portion of the chip area.","PeriodicalId":334688,"journal":{"name":"Proceedings of 1997 International Symposium on Low Power Electronics and Design","volume":"11 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"109","resultStr":"{\"title\":\"Reducing TLB power requirements\",\"authors\":\"Toni Juan, T. Lang, J. Navarro\",\"doi\":\"10.1145/263272.263332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Translation look-aside buffers (TLBs) are small caches to speed-up address translation in processors with virtual memory. This paper considers two issues: (1) a comparison of the power consumption of fully-associative, set-associative, and direct mapped TLBs for the same miss rate and (2) the proposal of modifications of the basic cells and of the structure of set-associative TLBs to reduce the power. The power evaluation is done using a model and the miss rates are obtained from simulations of the SPEC92 benchmark. With respect to (1) we conclude that for small TLBs (high miss rates) fully-associative TLBs consume less power but for larger TLBs (low miss rates) set-associative TLBs are better. Moreover, the proposed modifications produce significant reductions in power consumption. Our evaluations show a reduction of 40 to 60% compared to the best traditional TLB. The proposed TLB implementation produces an increase in delay and in area. However, these increases are tolerable because the cycle time is determined by the slower cache and because the TLB area corresponds to only a small portion of the chip area.\",\"PeriodicalId\":334688,\"journal\":{\"name\":\"Proceedings of 1997 International Symposium on Low Power Electronics and Design\",\"volume\":\"11 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"109\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1997 International Symposium on Low Power Electronics and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/263272.263332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1997 International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/263272.263332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 109

摘要

转换暂置缓冲区(tlb)是一种小型缓存,用于在具有虚拟内存的处理器中加速地址转换。本文考虑了两个问题:(1)在相同脱靶率下,比较了全关联tlb、集关联tlb和直接映射tlb的功耗;(2)提出了修改集关联tlb的基本单元和结构以降低功耗的建议。利用模型进行了功率评估,并通过对SPEC92基准的仿真得到了脱靶率。关于(1),我们得出结论,对于小tlb(高缺失率),全关联tlb消耗更少的功率,但对于大tlb(低缺失率),集关联tlb更好。此外,所提出的修改可以显著减少电力消耗。我们的评估显示,与最好的传统TLB相比,减少了40%至60%。拟议的TLB实施会增加延迟和面积。然而,这些增加是可以容忍的,因为周期时间是由较慢的缓存决定的,因为TLB区域只对应芯片区域的一小部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reducing TLB power requirements
Translation look-aside buffers (TLBs) are small caches to speed-up address translation in processors with virtual memory. This paper considers two issues: (1) a comparison of the power consumption of fully-associative, set-associative, and direct mapped TLBs for the same miss rate and (2) the proposal of modifications of the basic cells and of the structure of set-associative TLBs to reduce the power. The power evaluation is done using a model and the miss rates are obtained from simulations of the SPEC92 benchmark. With respect to (1) we conclude that for small TLBs (high miss rates) fully-associative TLBs consume less power but for larger TLBs (low miss rates) set-associative TLBs are better. Moreover, the proposed modifications produce significant reductions in power consumption. Our evaluations show a reduction of 40 to 60% compared to the best traditional TLB. The proposed TLB implementation produces an increase in delay and in area. However, these increases are tolerable because the cycle time is determined by the slower cache and because the TLB area corresponds to only a small portion of the chip area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信