种族鸡卵的质量检测和更新是基于透明对象检测的方法与灰色水平的联合occurrence MATRIX (GLCM)和K-NEAREST邻居(KNN)分类

Rizka Kaamtsaalil Salsabiilaa
{"title":"种族鸡卵的质量检测和更新是基于透明对象检测的方法与灰色水平的联合occurrence MATRIX (GLCM)和K-NEAREST邻居(KNN)分类","authors":"Rizka Kaamtsaalil Salsabiilaa","doi":"10.25124/TEKTRIKA.V1I2.1740","DOIUrl":null,"url":null,"abstract":"Telur adalah salah satu bahan pangan yang mudah dan lazim dijumpai di masyarakat Indonesia. Selain harganya murah, telur merupakan sumber nutrisi penting bagi kesehatan tubuh. Namun telur memiliki kualitas dan kesegaran yang berbeda-beda tergantung pada lingkungan penyimpanan dan kondisi induknya. Kesegaran telur dapat diketahui dari ketebalan dan kekentalan putih telurnya. Semakin tinggi putih telur semakin segar telur tersebut. Tebal atau tinggi albumen dapat diketahui dari nilai HU (Haugh Unit). Dalam makalah ini penulis membahas mengenai cara mendeteksi kualitas dan kesegaran telur menggunakan deteksi objek transparan dengan menggunakan metode GLCM (Grey Level Co-occurrence Method) dan klasifikasi KNN (K-Nearest Neighbor). Telur yang digunakan ialah telur ayam negeri. Pada penelitian ini dilakukan pengujian 51 citra telur, dengan komposisi masing-masing kelas memiliki 17 citra telur AA, 17 citra telur A, dan 17 citra telur B. Sehingga didapatkan akurasi terbaik sebesar 82.35% dengan menggunakan metode GLCM (Grey Level Co-occurrence Matrix) dengan parameter orde dua kontras, energy, korelasi, homogenitas dan arah sudut 45 pada jarak d = 1 dan kuantisasi yang digunakan adalah 8, dengan klasifikasi KNN (K-Neirest Neighbor) menggunakan jarak cosine pada K= 1.","PeriodicalId":167949,"journal":{"name":"TEKTRIKA - Jurnal Penelitian dan Pengembangan Telekomunikasi, Kendali, Komputer, Elektrik, dan Elektronika","volume":"82 1‐2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"DETEKSI KUALITAS DAN KESEGARAN TELUR AYAM RAS BERDASARKAN DETEKSI OBJEK TRANSPARAN DENGAN METODE GREY LEVEL CO-OCCURRENCE MATRIX (GLCM) DAN KLASIFIKASI K-NEAREST NEIGHBOR (KNN)\",\"authors\":\"Rizka Kaamtsaalil Salsabiilaa\",\"doi\":\"10.25124/TEKTRIKA.V1I2.1740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Telur adalah salah satu bahan pangan yang mudah dan lazim dijumpai di masyarakat Indonesia. Selain harganya murah, telur merupakan sumber nutrisi penting bagi kesehatan tubuh. Namun telur memiliki kualitas dan kesegaran yang berbeda-beda tergantung pada lingkungan penyimpanan dan kondisi induknya. Kesegaran telur dapat diketahui dari ketebalan dan kekentalan putih telurnya. Semakin tinggi putih telur semakin segar telur tersebut. Tebal atau tinggi albumen dapat diketahui dari nilai HU (Haugh Unit). Dalam makalah ini penulis membahas mengenai cara mendeteksi kualitas dan kesegaran telur menggunakan deteksi objek transparan dengan menggunakan metode GLCM (Grey Level Co-occurrence Method) dan klasifikasi KNN (K-Nearest Neighbor). Telur yang digunakan ialah telur ayam negeri. Pada penelitian ini dilakukan pengujian 51 citra telur, dengan komposisi masing-masing kelas memiliki 17 citra telur AA, 17 citra telur A, dan 17 citra telur B. Sehingga didapatkan akurasi terbaik sebesar 82.35% dengan menggunakan metode GLCM (Grey Level Co-occurrence Matrix) dengan parameter orde dua kontras, energy, korelasi, homogenitas dan arah sudut 45 pada jarak d = 1 dan kuantisasi yang digunakan adalah 8, dengan klasifikasi KNN (K-Neirest Neighbor) menggunakan jarak cosine pada K= 1.\",\"PeriodicalId\":167949,\"journal\":{\"name\":\"TEKTRIKA - Jurnal Penelitian dan Pengembangan Telekomunikasi, Kendali, Komputer, Elektrik, dan Elektronika\",\"volume\":\"82 1‐2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TEKTRIKA - Jurnal Penelitian dan Pengembangan Telekomunikasi, Kendali, Komputer, Elektrik, dan Elektronika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25124/TEKTRIKA.V1I2.1740\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TEKTRIKA - Jurnal Penelitian dan Pengembangan Telekomunikasi, Kendali, Komputer, Elektrik, dan Elektronika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25124/TEKTRIKA.V1I2.1740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

鸡蛋是印尼社会中最常见的食品之一。除了价格便宜外,鸡蛋是维持健康的重要营养来源。然而有不同的质量和新鲜鸡蛋存储取决于环境和条件更少。从蛋壳的厚度和粘性可以看出鸡蛋是新鲜的。这些蛋白越高越新鲜鸡蛋。高厚或蛋白可知的胡(Haugh单位)的价值。在这篇论文中,作者讨论了如何通过GLCM方法(GLCM水平的共同occurrence Method)和KNN (K-Nearest Neighbor)的方法来检测鸡蛋的质量和新鲜感。全国使用的鸡蛋是鸡蛋。上这个研究测试图像51蛋有17个鸡蛋的形象和成分,每一间教室里AA 17、17鸡蛋图像A和图像B鸡蛋。所以最好的准确度高达82获得。35%用GLCM (Grey Co-occurrence级矩阵方法,energy)和秩序两个参数对比,但相关性,homogenitas方向45角度距离d = 1和kuantisasi使用的是8,用KNN分类(K-Neirest邻居)K = 1的cosine半径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DETEKSI KUALITAS DAN KESEGARAN TELUR AYAM RAS BERDASARKAN DETEKSI OBJEK TRANSPARAN DENGAN METODE GREY LEVEL CO-OCCURRENCE MATRIX (GLCM) DAN KLASIFIKASI K-NEAREST NEIGHBOR (KNN)
Telur adalah salah satu bahan pangan yang mudah dan lazim dijumpai di masyarakat Indonesia. Selain harganya murah, telur merupakan sumber nutrisi penting bagi kesehatan tubuh. Namun telur memiliki kualitas dan kesegaran yang berbeda-beda tergantung pada lingkungan penyimpanan dan kondisi induknya. Kesegaran telur dapat diketahui dari ketebalan dan kekentalan putih telurnya. Semakin tinggi putih telur semakin segar telur tersebut. Tebal atau tinggi albumen dapat diketahui dari nilai HU (Haugh Unit). Dalam makalah ini penulis membahas mengenai cara mendeteksi kualitas dan kesegaran telur menggunakan deteksi objek transparan dengan menggunakan metode GLCM (Grey Level Co-occurrence Method) dan klasifikasi KNN (K-Nearest Neighbor). Telur yang digunakan ialah telur ayam negeri. Pada penelitian ini dilakukan pengujian 51 citra telur, dengan komposisi masing-masing kelas memiliki 17 citra telur AA, 17 citra telur A, dan 17 citra telur B. Sehingga didapatkan akurasi terbaik sebesar 82.35% dengan menggunakan metode GLCM (Grey Level Co-occurrence Matrix) dengan parameter orde dua kontras, energy, korelasi, homogenitas dan arah sudut 45 pada jarak d = 1 dan kuantisasi yang digunakan adalah 8, dengan klasifikasi KNN (K-Neirest Neighbor) menggunakan jarak cosine pada K= 1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信