旅游推荐的概率社会序列模型

Vineeth Rakesh, Niranjan Jadhav, Alexander Kotov, C. Reddy
{"title":"旅游推荐的概率社会序列模型","authors":"Vineeth Rakesh, Niranjan Jadhav, Alexander Kotov, C. Reddy","doi":"10.1145/3018661.3018711","DOIUrl":null,"url":null,"abstract":"The pervasive growth of location-based services such as Foursquare and Yelp has enabled researchers to incorpo- rate better personalization into recommendation models by leveraging the geo-temporal breadcrumbs left by a plethora of travelers. In this paper, we explore Travel path recommendation, which is one of the applications of intelligent urban navigation that aims in recommending sequence of point of interest (POIs) to tourists. Currently, travelers rely on a tedious and time-consuming process of searching the web, browsing through websites such as Trip Advisor, and reading travel blogs to compile an itinerary. On the other hand, people who do not plan ahead of their trip find it extremely difficult to do this in real-time since there are no automated systems that can provide personalized itinerary for travelers. To tackle this problem, we propose a tour recommendation model that uses a probabilistic generative framework to incorporate user's categorical preference, influence from their social circle, the dynamic travel transitions (or patterns) and the popularity of venues to recommend sequence of POIs for tourists. Through comprehensive experiments over a rich dataset of travel patterns from Foursquare, we show that our model is capable of outperforming the state-of-the-art probabilistic tour recommendation model by providing contextual and meaningful recommendation for travelers.","PeriodicalId":344017,"journal":{"name":"Proceedings of the Tenth ACM International Conference on Web Search and Data Mining","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Probabilistic Social Sequential Model for Tour Recommendation\",\"authors\":\"Vineeth Rakesh, Niranjan Jadhav, Alexander Kotov, C. Reddy\",\"doi\":\"10.1145/3018661.3018711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The pervasive growth of location-based services such as Foursquare and Yelp has enabled researchers to incorpo- rate better personalization into recommendation models by leveraging the geo-temporal breadcrumbs left by a plethora of travelers. In this paper, we explore Travel path recommendation, which is one of the applications of intelligent urban navigation that aims in recommending sequence of point of interest (POIs) to tourists. Currently, travelers rely on a tedious and time-consuming process of searching the web, browsing through websites such as Trip Advisor, and reading travel blogs to compile an itinerary. On the other hand, people who do not plan ahead of their trip find it extremely difficult to do this in real-time since there are no automated systems that can provide personalized itinerary for travelers. To tackle this problem, we propose a tour recommendation model that uses a probabilistic generative framework to incorporate user's categorical preference, influence from their social circle, the dynamic travel transitions (or patterns) and the popularity of venues to recommend sequence of POIs for tourists. Through comprehensive experiments over a rich dataset of travel patterns from Foursquare, we show that our model is capable of outperforming the state-of-the-art probabilistic tour recommendation model by providing contextual and meaningful recommendation for travelers.\",\"PeriodicalId\":344017,\"journal\":{\"name\":\"Proceedings of the Tenth ACM International Conference on Web Search and Data Mining\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Tenth ACM International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3018661.3018711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Tenth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3018661.3018711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

Foursquare和Yelp等基于位置的服务的普及,使研究人员能够利用大量旅行者留下的地理时间碎屑,将更好的个性化融入推荐模型中。旅游路径推荐是智能城市导航的应用之一,其目的是向游客推荐兴趣点(poi)序列。目前,旅行者主要依靠搜索网页、浏览Trip Advisor等网站以及阅读旅游博客等冗长而耗时的过程来编制行程。另一方面,那些不提前计划旅行的人发现很难实时做到这一点,因为没有自动化系统可以为旅行者提供个性化的行程。为了解决这一问题,我们提出了一个使用概率生成框架的旅游推荐模型,该模型将用户的分类偏好、社交圈的影响、动态旅游转变(或模式)和地点的受欢迎程度结合起来,为游客推荐poi序列。通过对Foursquare丰富的旅行模式数据集的综合实验,我们表明,通过为旅行者提供上下文和有意义的推荐,我们的模型能够优于最先进的概率旅游推荐模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic Social Sequential Model for Tour Recommendation
The pervasive growth of location-based services such as Foursquare and Yelp has enabled researchers to incorpo- rate better personalization into recommendation models by leveraging the geo-temporal breadcrumbs left by a plethora of travelers. In this paper, we explore Travel path recommendation, which is one of the applications of intelligent urban navigation that aims in recommending sequence of point of interest (POIs) to tourists. Currently, travelers rely on a tedious and time-consuming process of searching the web, browsing through websites such as Trip Advisor, and reading travel blogs to compile an itinerary. On the other hand, people who do not plan ahead of their trip find it extremely difficult to do this in real-time since there are no automated systems that can provide personalized itinerary for travelers. To tackle this problem, we propose a tour recommendation model that uses a probabilistic generative framework to incorporate user's categorical preference, influence from their social circle, the dynamic travel transitions (or patterns) and the popularity of venues to recommend sequence of POIs for tourists. Through comprehensive experiments over a rich dataset of travel patterns from Foursquare, we show that our model is capable of outperforming the state-of-the-art probabilistic tour recommendation model by providing contextual and meaningful recommendation for travelers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信