{"title":"有限的风扇,tori和d模块的动作","authors":"Sonia L. Rueda","doi":"10.1145/1113439.1113450","DOIUrl":null,"url":null,"abstract":"Let <i>G</i> be a finite dimensional torus acting diagonally on the smooth affine variety <i>X</i> = <i>k</i><sup><i>r</i></sup> x (<i>k</i><sup><i>x</i></sup>)<sup><i>s</i></sup>, with <i>k</i> an algebraically closed field <i>k</i> of characteristic 0. We denote the ring of regular functions on <i>X</i> by <i>O</i>(<i>X</i>) and the ring of differential operators by <i>D</i>(<i>X</i>). Let <i>D</i>(<i>X</i>)<sup><i>G</i></sup> be the subring of <i>D</i>(<i>X</i>) of invariants under the action of <i>G</i>.The goal of this poster is to show how finite fans of cones can be used to study <i>D</i>(<i>X</i>)<sup><i>G</i></sup>-modules. We associate a finite fan of cones to the action of <i>G</i> on <i>X</i>, in such a way that the study of the fan will allow us to get conclusions about the finite dimensional <i>D</i>(<i>X</i>)<sup><i>G</i></sup>-modules. We describe next the basic ingredients of our construction.","PeriodicalId":314801,"journal":{"name":"SIGSAM Bull.","volume":"26 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Finite fans, actions of tori and D-modules\",\"authors\":\"Sonia L. Rueda\",\"doi\":\"10.1145/1113439.1113450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <i>G</i> be a finite dimensional torus acting diagonally on the smooth affine variety <i>X</i> = <i>k</i><sup><i>r</i></sup> x (<i>k</i><sup><i>x</i></sup>)<sup><i>s</i></sup>, with <i>k</i> an algebraically closed field <i>k</i> of characteristic 0. We denote the ring of regular functions on <i>X</i> by <i>O</i>(<i>X</i>) and the ring of differential operators by <i>D</i>(<i>X</i>). Let <i>D</i>(<i>X</i>)<sup><i>G</i></sup> be the subring of <i>D</i>(<i>X</i>) of invariants under the action of <i>G</i>.The goal of this poster is to show how finite fans of cones can be used to study <i>D</i>(<i>X</i>)<sup><i>G</i></sup>-modules. We associate a finite fan of cones to the action of <i>G</i> on <i>X</i>, in such a way that the study of the fan will allow us to get conclusions about the finite dimensional <i>D</i>(<i>X</i>)<sup><i>G</i></sup>-modules. We describe next the basic ingredients of our construction.\",\"PeriodicalId\":314801,\"journal\":{\"name\":\"SIGSAM Bull.\",\"volume\":\"26 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGSAM Bull.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1113439.1113450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGSAM Bull.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1113439.1113450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
设G是一个有限维环面,对角作用于光滑仿射变量X = kr X (kx)s, k是特征为0的代数闭场k。我们用O(X)表示X上正则函数的环,用D(X)表示微分算子的环。设D(X)G是G作用下不变量D(X)的子函数。这张海报的目的是展示如何利用有限锥扇来研究D(X)G模。我们将有限的锥扇与G对X的作用联系起来,这样,对锥扇的研究将使我们能够得到关于有限维D(X)G模的结论。接下来我们描述我们的结构的基本成分。
Let G be a finite dimensional torus acting diagonally on the smooth affine variety X = kr x (kx)s, with k an algebraically closed field k of characteristic 0. We denote the ring of regular functions on X by O(X) and the ring of differential operators by D(X). Let D(X)G be the subring of D(X) of invariants under the action of G.The goal of this poster is to show how finite fans of cones can be used to study D(X)G-modules. We associate a finite fan of cones to the action of G on X, in such a way that the study of the fan will allow us to get conclusions about the finite dimensional D(X)G-modules. We describe next the basic ingredients of our construction.