未知非视距条件下的移动跟踪

Chen Liang, Henri Pesonen, R. Piché
{"title":"未知非视距条件下的移动跟踪","authors":"Chen Liang, Henri Pesonen, R. Piché","doi":"10.1109/UPINLBS.2010.5654324","DOIUrl":null,"url":null,"abstract":"This paper studies the mobile tracking problem in mixed line-of-sight (LOS) and non-line-of-sight (NLOS) conditions, where the statistics of NLOS error are assumed unknown. Three different models are used to describe the NLOS errors. A Rao-Blackwellized particle filtering with parameter learning (RBPF-PL) is presented, in which the posterior of sight conditions is estimated by particle filtering while the mobile state and NLOS parameters are analytically computed. Simulation results are provided to evaluate the performance of RBPF-PL variants in different situations. Simulation show that unless it is known that NLOS noise has the same bias and variance in all the observations, the more complicated models should be employed as they work correctly even in NLOS model mismatch, with only slightly more computational complexity.","PeriodicalId":373653,"journal":{"name":"2010 Ubiquitous Positioning Indoor Navigation and Location Based Service","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mobile tracking in unknown non-line-of-sight conditions\",\"authors\":\"Chen Liang, Henri Pesonen, R. Piché\",\"doi\":\"10.1109/UPINLBS.2010.5654324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the mobile tracking problem in mixed line-of-sight (LOS) and non-line-of-sight (NLOS) conditions, where the statistics of NLOS error are assumed unknown. Three different models are used to describe the NLOS errors. A Rao-Blackwellized particle filtering with parameter learning (RBPF-PL) is presented, in which the posterior of sight conditions is estimated by particle filtering while the mobile state and NLOS parameters are analytically computed. Simulation results are provided to evaluate the performance of RBPF-PL variants in different situations. Simulation show that unless it is known that NLOS noise has the same bias and variance in all the observations, the more complicated models should be employed as they work correctly even in NLOS model mismatch, with only slightly more computational complexity.\",\"PeriodicalId\":373653,\"journal\":{\"name\":\"2010 Ubiquitous Positioning Indoor Navigation and Location Based Service\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Ubiquitous Positioning Indoor Navigation and Location Based Service\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UPINLBS.2010.5654324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ubiquitous Positioning Indoor Navigation and Location Based Service","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPINLBS.2010.5654324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了视距和非视距混合条件下的移动跟踪问题,其中视距误差的统计量是未知的。采用了三种不同的模型来描述NLOS误差。提出了一种基于参数学习的rao - blackwell化粒子滤波方法(RBPF-PL),该方法通过粒子滤波估计视觉条件的后验,同时解析计算运动状态和NLOS参数。仿真结果评估了RBPF-PL变体在不同情况下的性能。仿真表明,除非已知NLOS噪声在所有观测值中具有相同的偏差和方差,否则应采用更复杂的模型,因为它们即使在NLOS模型不匹配的情况下也能正常工作,而计算复杂度仅略高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mobile tracking in unknown non-line-of-sight conditions
This paper studies the mobile tracking problem in mixed line-of-sight (LOS) and non-line-of-sight (NLOS) conditions, where the statistics of NLOS error are assumed unknown. Three different models are used to describe the NLOS errors. A Rao-Blackwellized particle filtering with parameter learning (RBPF-PL) is presented, in which the posterior of sight conditions is estimated by particle filtering while the mobile state and NLOS parameters are analytically computed. Simulation results are provided to evaluate the performance of RBPF-PL variants in different situations. Simulation show that unless it is known that NLOS noise has the same bias and variance in all the observations, the more complicated models should be employed as they work correctly even in NLOS model mismatch, with only slightly more computational complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信