{"title":"牙科CAD/CAM系统的开发","authors":"M Kawanaka","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Studies have been undertaken to apply CAD/CAM system to Dentistry and to make prosthetic appliances with this system automatically. Specimens are 4 times large plaster models. For the inside of the crown, the plaster model of prepared tooth is measured with laser displacement meter then the numerical data is obtained. After modification of this data for the concave cutting, the modeling machine works with this numerical data. For the outside of the crown, the typical colonal figure data (= CAD Data Base) is prepared. And this data is modified with computer to fit the prepared tooth margin and proximal or antagonical tooth (= CAD). This CAD Data Base was obtained with 3 dimensional point digitizer (3DPD). Because this measuring method with 3DPD is to be able to select points, the CAD Data Base could be consists of characteristic points. When this data base is really used, it is interpolated with s-spline. Spline interpolation is indispensable to the CAD/CAM system. Further understanding of this system, explanation is divided into three parts which are 3D measurement, CAD and CAM. (3D measurement) Two types of 3D measurement is dealed with this system. One is for the CAD data base and another is for the prepared tooth model. 3D measurement of the prepared tooth model is equivalent of the impression takings in the routine method. For the clear marginal line and for the uniform distribution of measuring points, the prepared tooth model is tilted and rotated on the working table when it is measured with laser. (CAD) The CAD Data Base can be extended, contracted, parallel translated and rotated with the Affine transformation. For putting the individual margin data on the CAD Data Base, the prepared tooth margin is re-digitized with 3DPD. Occlusal data is taken from F.G.P. core. (CAM) The application of the spline interpolation to the tool offset theory, which is effective at the groove especially, makes easy to calculate the tool path. When the prepared tooth model is manufactured, it is tilted and rotated on the table like the measurement with laser-scan.</p>","PeriodicalId":75367,"journal":{"name":"[Osaka Daigaku shigaku zasshi] The journal of Osaka University Dental Society","volume":"35 1","pages":"206-39"},"PeriodicalIF":0.0000,"publicationDate":"1990-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Development of the dental CAD/CAM system].\",\"authors\":\"M Kawanaka\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Studies have been undertaken to apply CAD/CAM system to Dentistry and to make prosthetic appliances with this system automatically. Specimens are 4 times large plaster models. For the inside of the crown, the plaster model of prepared tooth is measured with laser displacement meter then the numerical data is obtained. After modification of this data for the concave cutting, the modeling machine works with this numerical data. For the outside of the crown, the typical colonal figure data (= CAD Data Base) is prepared. And this data is modified with computer to fit the prepared tooth margin and proximal or antagonical tooth (= CAD). This CAD Data Base was obtained with 3 dimensional point digitizer (3DPD). Because this measuring method with 3DPD is to be able to select points, the CAD Data Base could be consists of characteristic points. When this data base is really used, it is interpolated with s-spline. Spline interpolation is indispensable to the CAD/CAM system. Further understanding of this system, explanation is divided into three parts which are 3D measurement, CAD and CAM. (3D measurement) Two types of 3D measurement is dealed with this system. One is for the CAD data base and another is for the prepared tooth model. 3D measurement of the prepared tooth model is equivalent of the impression takings in the routine method. For the clear marginal line and for the uniform distribution of measuring points, the prepared tooth model is tilted and rotated on the working table when it is measured with laser. (CAD) The CAD Data Base can be extended, contracted, parallel translated and rotated with the Affine transformation. For putting the individual margin data on the CAD Data Base, the prepared tooth margin is re-digitized with 3DPD. Occlusal data is taken from F.G.P. core. (CAM) The application of the spline interpolation to the tool offset theory, which is effective at the groove especially, makes easy to calculate the tool path. When the prepared tooth model is manufactured, it is tilted and rotated on the table like the measurement with laser-scan.</p>\",\"PeriodicalId\":75367,\"journal\":{\"name\":\"[Osaka Daigaku shigaku zasshi] The journal of Osaka University Dental Society\",\"volume\":\"35 1\",\"pages\":\"206-39\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Osaka Daigaku shigaku zasshi] The journal of Osaka University Dental Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Osaka Daigaku shigaku zasshi] The journal of Osaka University Dental Society","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Studies have been undertaken to apply CAD/CAM system to Dentistry and to make prosthetic appliances with this system automatically. Specimens are 4 times large plaster models. For the inside of the crown, the plaster model of prepared tooth is measured with laser displacement meter then the numerical data is obtained. After modification of this data for the concave cutting, the modeling machine works with this numerical data. For the outside of the crown, the typical colonal figure data (= CAD Data Base) is prepared. And this data is modified with computer to fit the prepared tooth margin and proximal or antagonical tooth (= CAD). This CAD Data Base was obtained with 3 dimensional point digitizer (3DPD). Because this measuring method with 3DPD is to be able to select points, the CAD Data Base could be consists of characteristic points. When this data base is really used, it is interpolated with s-spline. Spline interpolation is indispensable to the CAD/CAM system. Further understanding of this system, explanation is divided into three parts which are 3D measurement, CAD and CAM. (3D measurement) Two types of 3D measurement is dealed with this system. One is for the CAD data base and another is for the prepared tooth model. 3D measurement of the prepared tooth model is equivalent of the impression takings in the routine method. For the clear marginal line and for the uniform distribution of measuring points, the prepared tooth model is tilted and rotated on the working table when it is measured with laser. (CAD) The CAD Data Base can be extended, contracted, parallel translated and rotated with the Affine transformation. For putting the individual margin data on the CAD Data Base, the prepared tooth margin is re-digitized with 3DPD. Occlusal data is taken from F.G.P. core. (CAM) The application of the spline interpolation to the tool offset theory, which is effective at the groove especially, makes easy to calculate the tool path. When the prepared tooth model is manufactured, it is tilted and rotated on the table like the measurement with laser-scan.