基于OpenCL的Intel FPGA上隐式同步的高性能流Smith-Waterman实现

Ernst Houtgast, V. Sima, Z. Al-Ars
{"title":"基于OpenCL的Intel FPGA上隐式同步的高性能流Smith-Waterman实现","authors":"Ernst Houtgast, V. Sima, Z. Al-Ars","doi":"10.1109/BIBE.2017.000-6","DOIUrl":null,"url":null,"abstract":"The Smith-Waterman algorithm is widely used in bioinformatics and is often used as a benchmark of FPGA performance. Here we present our highly optimized Smith-Waterman implementation on Intel FPGAs using OpenCL. Our implementation is both faster and more efficient than other current Smith-Waterman implementations, obtaining a theoretical performance of 214 GCUPS. Moreover, due to the streaming, implicit synchronizing nature of our implementation, which streams alignments and places no restrictions on the number of alignments in flight, it achieves 99.8% of this performance in practice, almost three times as fast as previous implementations. The expressiveness of OpenCL results in a significant reduction in lines of code, and in a significant reduction of development time compared to programming in regular hardware description languages","PeriodicalId":262603,"journal":{"name":"2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"High Performance Streaming Smith-Waterman Implementation with Implicit Synchronization on Intel FPGA using OpenCL\",\"authors\":\"Ernst Houtgast, V. Sima, Z. Al-Ars\",\"doi\":\"10.1109/BIBE.2017.000-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Smith-Waterman algorithm is widely used in bioinformatics and is often used as a benchmark of FPGA performance. Here we present our highly optimized Smith-Waterman implementation on Intel FPGAs using OpenCL. Our implementation is both faster and more efficient than other current Smith-Waterman implementations, obtaining a theoretical performance of 214 GCUPS. Moreover, due to the streaming, implicit synchronizing nature of our implementation, which streams alignments and places no restrictions on the number of alignments in flight, it achieves 99.8% of this performance in practice, almost three times as fast as previous implementations. The expressiveness of OpenCL results in a significant reduction in lines of code, and in a significant reduction of development time compared to programming in regular hardware description languages\",\"PeriodicalId\":262603,\"journal\":{\"name\":\"2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE.2017.000-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2017.000-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

Smith-Waterman算法广泛应用于生物信息学领域,常被用作FPGA性能的基准。在这里,我们展示了使用OpenCL在英特尔fpga上高度优化的Smith-Waterman实现。我们的实现比目前Smith-Waterman的其他实现更快、更高效,获得了214 GCUPS的理论性能。此外,由于我们实现的流,隐式同步特性,它流式排列并且不限制飞行中的对齐数量,它在实践中达到了99.8%的性能,几乎是以前实现的三倍。与使用常规硬件描述语言编程相比,OpenCL的表达性大大减少了代码行数,并大大减少了开发时间
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High Performance Streaming Smith-Waterman Implementation with Implicit Synchronization on Intel FPGA using OpenCL
The Smith-Waterman algorithm is widely used in bioinformatics and is often used as a benchmark of FPGA performance. Here we present our highly optimized Smith-Waterman implementation on Intel FPGAs using OpenCL. Our implementation is both faster and more efficient than other current Smith-Waterman implementations, obtaining a theoretical performance of 214 GCUPS. Moreover, due to the streaming, implicit synchronizing nature of our implementation, which streams alignments and places no restrictions on the number of alignments in flight, it achieves 99.8% of this performance in practice, almost three times as fast as previous implementations. The expressiveness of OpenCL results in a significant reduction in lines of code, and in a significant reduction of development time compared to programming in regular hardware description languages
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信