基于轴向氮化镓的同步人脸幻觉和热到可见人脸的转换验证

Rakhil Immidisetti, Shuowen Hu, Vishal M. Patel
{"title":"基于轴向氮化镓的同步人脸幻觉和热到可见人脸的转换验证","authors":"Rakhil Immidisetti, Shuowen Hu, Vishal M. Patel","doi":"10.1109/IJCB52358.2021.9484353","DOIUrl":null,"url":null,"abstract":"Existing thermal-to-visible face verification approaches expect the thermal and visible face images to be of similar resolution. This is unlikely in real-world long-range surveillance systems since humans are distant from the cameras. To address this issue, we introduce the task of thermal- to-visible face verification from low-resolution thermal images. Furthermore, we propose Axial-Generative Adversarial Network (Axial-GAN) to synthesize high-resolution visible images for matching. In the proposed approach we augment the GAN framework with axial-attention layers which leverage the recent advances in transformers for modelling long-range dependencies. We demonstrate the effectiveness of the proposed method by evaluating on two different thermal-visible face datasets. When compared to related state-of-the-art works, our results show significant improvements in both image quality and face verification performance, and are also much more efficient.","PeriodicalId":175984,"journal":{"name":"2021 IEEE International Joint Conference on Biometrics (IJCB)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Simultaneous Face Hallucination and Translation for Thermal to Visible Face Verification using Axial-GAN\",\"authors\":\"Rakhil Immidisetti, Shuowen Hu, Vishal M. Patel\",\"doi\":\"10.1109/IJCB52358.2021.9484353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing thermal-to-visible face verification approaches expect the thermal and visible face images to be of similar resolution. This is unlikely in real-world long-range surveillance systems since humans are distant from the cameras. To address this issue, we introduce the task of thermal- to-visible face verification from low-resolution thermal images. Furthermore, we propose Axial-Generative Adversarial Network (Axial-GAN) to synthesize high-resolution visible images for matching. In the proposed approach we augment the GAN framework with axial-attention layers which leverage the recent advances in transformers for modelling long-range dependencies. We demonstrate the effectiveness of the proposed method by evaluating on two different thermal-visible face datasets. When compared to related state-of-the-art works, our results show significant improvements in both image quality and face verification performance, and are also much more efficient.\",\"PeriodicalId\":175984,\"journal\":{\"name\":\"2021 IEEE International Joint Conference on Biometrics (IJCB)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCB52358.2021.9484353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB52358.2021.9484353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

现有的热-可见人脸验证方法期望热-可见人脸图像具有相似的分辨率。这在现实世界的远程监控系统中是不太可能的,因为人类离摄像头很远。为了解决这个问题,我们引入了低分辨率热图像的热可见人脸验证任务。此外,我们提出了轴向生成对抗网络(Axial-GAN)来合成高分辨率的可见图像进行匹配。在提出的方法中,我们利用轴向关注层来增强GAN框架,轴向关注层利用变压器的最新进展来建模远程依赖关系。我们通过对两个不同的热可见人脸数据集进行评估,证明了所提出方法的有效性。与相关的最新研究成果相比,我们的研究结果在图像质量和人脸验证性能方面都有显著改善,而且效率也高得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simultaneous Face Hallucination and Translation for Thermal to Visible Face Verification using Axial-GAN
Existing thermal-to-visible face verification approaches expect the thermal and visible face images to be of similar resolution. This is unlikely in real-world long-range surveillance systems since humans are distant from the cameras. To address this issue, we introduce the task of thermal- to-visible face verification from low-resolution thermal images. Furthermore, we propose Axial-Generative Adversarial Network (Axial-GAN) to synthesize high-resolution visible images for matching. In the proposed approach we augment the GAN framework with axial-attention layers which leverage the recent advances in transformers for modelling long-range dependencies. We demonstrate the effectiveness of the proposed method by evaluating on two different thermal-visible face datasets. When compared to related state-of-the-art works, our results show significant improvements in both image quality and face verification performance, and are also much more efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信