可逆时频曲面

D. Nelson
{"title":"可逆时频曲面","authors":"D. Nelson","doi":"10.1109/TFSA.1998.721349","DOIUrl":null,"url":null,"abstract":"A classical problem in time-frequency (TF) analysis is the inversion of a TF surface to recover a signal whose TF representation is that surface. A class of invertible surfaces is presented. In this class, simple processes may be used to recover the signal and \"spectrum\" directly from the surface. These surfaces are linear generalizations of one-dimensional linear transforms, and may be complex valued. It is shown that several of the paradoxes associated with nonlinear surfaces may be resolved in invertible surfaces.","PeriodicalId":395542,"journal":{"name":"Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis (Cat. No.98TH8380)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Invertible time-frequency surfaces\",\"authors\":\"D. Nelson\",\"doi\":\"10.1109/TFSA.1998.721349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A classical problem in time-frequency (TF) analysis is the inversion of a TF surface to recover a signal whose TF representation is that surface. A class of invertible surfaces is presented. In this class, simple processes may be used to recover the signal and \\\"spectrum\\\" directly from the surface. These surfaces are linear generalizations of one-dimensional linear transforms, and may be complex valued. It is shown that several of the paradoxes associated with nonlinear surfaces may be resolved in invertible surfaces.\",\"PeriodicalId\":395542,\"journal\":{\"name\":\"Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis (Cat. No.98TH8380)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis (Cat. No.98TH8380)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TFSA.1998.721349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis (Cat. No.98TH8380)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TFSA.1998.721349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

时频分析中的一个经典问题是对时频表面进行反演,以恢复其TF表示为该表面的信号。给出了一类可逆曲面。在这一类中,可以使用简单的过程直接从表面恢复信号和“频谱”。这些曲面是一维线性变换的线性推广,可以是复值曲面。结果表明,与非线性曲面相关的一些悖论可以在可逆曲面中得到解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Invertible time-frequency surfaces
A classical problem in time-frequency (TF) analysis is the inversion of a TF surface to recover a signal whose TF representation is that surface. A class of invertible surfaces is presented. In this class, simple processes may be used to recover the signal and "spectrum" directly from the surface. These surfaces are linear generalizations of one-dimensional linear transforms, and may be complex valued. It is shown that several of the paradoxes associated with nonlinear surfaces may be resolved in invertible surfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信