三种载玻片扫描技术的性能分析

Yilun Fan, Y. Gal, A. Bradley
{"title":"三种载玻片扫描技术的性能分析","authors":"Yilun Fan, Y. Gal, A. Bradley","doi":"10.1109/DICTA.2013.6691511","DOIUrl":null,"url":null,"abstract":"The demands for digital pathology systems have increased dramatically in the last decade as Virtual Microscopy (VM) has gained increasing popularity. Many digital slide acquisition systems have been developed to meet this demand, utilising a variety of image scan techniques. However, the requirements for, and performance of, these scan techniques are largely undocumented. Therefore, in this paper we evaluate the three primary approaches to digital slide scanning in light field microscopy: field-of-view (FOV) scan, line scan and slanted specimen scan. Initially, we develop equations for each technique that estimates their theoretical scan times in terms data throughput rates. Next, we compare each system's performance based on the relationships between illumination, camera frame rates, data transfer rates and microscope stage speed. We conclude that slanted scan system capable of acquiring multiple focal planes in one pass have the potential to obtain the shortest scan times within current constraints on stage and camera hardware.","PeriodicalId":231632,"journal":{"name":"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Performance Analysis of Three Microscope Slide Scanning Techniques\",\"authors\":\"Yilun Fan, Y. Gal, A. Bradley\",\"doi\":\"10.1109/DICTA.2013.6691511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The demands for digital pathology systems have increased dramatically in the last decade as Virtual Microscopy (VM) has gained increasing popularity. Many digital slide acquisition systems have been developed to meet this demand, utilising a variety of image scan techniques. However, the requirements for, and performance of, these scan techniques are largely undocumented. Therefore, in this paper we evaluate the three primary approaches to digital slide scanning in light field microscopy: field-of-view (FOV) scan, line scan and slanted specimen scan. Initially, we develop equations for each technique that estimates their theoretical scan times in terms data throughput rates. Next, we compare each system's performance based on the relationships between illumination, camera frame rates, data transfer rates and microscope stage speed. We conclude that slanted scan system capable of acquiring multiple focal planes in one pass have the potential to obtain the shortest scan times within current constraints on stage and camera hardware.\",\"PeriodicalId\":231632,\"journal\":{\"name\":\"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2013.6691511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2013.6691511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在过去的十年中,随着虚拟显微镜(VM)的日益普及,对数字病理系统的需求急剧增加。许多数字幻灯片采集系统已经开发,以满足这一需求,利用各种图像扫描技术。然而,这些扫描技术的需求和性能在很大程度上没有文档记录。因此,在本文中,我们评估了三种主要的方法来数字扫描幻灯片在光场显微镜:视场扫描(FOV)扫描,线扫描和倾斜标本扫描。最初,我们为每种技术开发方程,以数据吞吐率估计其理论扫描时间。接下来,我们根据光照、相机帧速率、数据传输速率和显微镜舞台速度之间的关系,比较了每个系统的性能。我们得出的结论是,在当前的舞台和相机硬件限制下,能够在一次通道中获取多个焦平面的倾斜扫描系统有可能获得最短的扫描时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Analysis of Three Microscope Slide Scanning Techniques
The demands for digital pathology systems have increased dramatically in the last decade as Virtual Microscopy (VM) has gained increasing popularity. Many digital slide acquisition systems have been developed to meet this demand, utilising a variety of image scan techniques. However, the requirements for, and performance of, these scan techniques are largely undocumented. Therefore, in this paper we evaluate the three primary approaches to digital slide scanning in light field microscopy: field-of-view (FOV) scan, line scan and slanted specimen scan. Initially, we develop equations for each technique that estimates their theoretical scan times in terms data throughput rates. Next, we compare each system's performance based on the relationships between illumination, camera frame rates, data transfer rates and microscope stage speed. We conclude that slanted scan system capable of acquiring multiple focal planes in one pass have the potential to obtain the shortest scan times within current constraints on stage and camera hardware.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信