移动人群感知的参与者声誉感知数据收集机制

J. Yang, Pengcheng Li, Honggang Wang
{"title":"移动人群感知的参与者声誉感知数据收集机制","authors":"J. Yang, Pengcheng Li, Honggang Wang","doi":"10.1109/ICCChina.2017.8330348","DOIUrl":null,"url":null,"abstract":"The malicious behaviors of participants can reduce the reliability significantly in data collecting process of Mobile Crowd Sensing. To solve this problem, a participant reputation aware data collecting mechanism is proposed, which analyzes reputation state, quantifies historical reputation of participants according to willingness and data quality, and then updates the reputation of participants by logistic regression function. Furthermore, the server can accurately choose participant and efficiently collect sensing data in multitasking scenario. Simulation results show that the proposed mechanism can significantly improve the quality of sensing data with excellent real-time performance and reduce overhead.","PeriodicalId":418396,"journal":{"name":"2017 IEEE/CIC International Conference on Communications in China (ICCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Participant reputation aware data collecting mechanism for mobile crowd sensing\",\"authors\":\"J. Yang, Pengcheng Li, Honggang Wang\",\"doi\":\"10.1109/ICCChina.2017.8330348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The malicious behaviors of participants can reduce the reliability significantly in data collecting process of Mobile Crowd Sensing. To solve this problem, a participant reputation aware data collecting mechanism is proposed, which analyzes reputation state, quantifies historical reputation of participants according to willingness and data quality, and then updates the reputation of participants by logistic regression function. Furthermore, the server can accurately choose participant and efficiently collect sensing data in multitasking scenario. Simulation results show that the proposed mechanism can significantly improve the quality of sensing data with excellent real-time performance and reduce overhead.\",\"PeriodicalId\":418396,\"journal\":{\"name\":\"2017 IEEE/CIC International Conference on Communications in China (ICCC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/CIC International Conference on Communications in China (ICCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCChina.2017.8330348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/CIC International Conference on Communications in China (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCChina.2017.8330348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在移动人群感知数据采集过程中,参与者的恶意行为会显著降低数据采集的可靠性。为了解决这一问题,提出了一种参与者声誉感知数据收集机制,该机制分析参与者的声誉状态,根据参与者的意愿和数据质量量化参与者的历史声誉,然后通过逻辑回归函数更新参与者的声誉。此外,在多任务场景下,服务器可以准确地选择参与者并有效地收集传感数据。仿真结果表明,该机制能够显著提高传感数据质量,具有良好的实时性和降低开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Participant reputation aware data collecting mechanism for mobile crowd sensing
The malicious behaviors of participants can reduce the reliability significantly in data collecting process of Mobile Crowd Sensing. To solve this problem, a participant reputation aware data collecting mechanism is proposed, which analyzes reputation state, quantifies historical reputation of participants according to willingness and data quality, and then updates the reputation of participants by logistic regression function. Furthermore, the server can accurately choose participant and efficiently collect sensing data in multitasking scenario. Simulation results show that the proposed mechanism can significantly improve the quality of sensing data with excellent real-time performance and reduce overhead.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信