{"title":"基于传输线理论的PLC信道仿真","authors":"Florian Gruber, L. Lampe","doi":"10.1109/ISPLC.2015.7147610","DOIUrl":null,"url":null,"abstract":"The emulation of power line communication (PLC) channels is an important tool for the analysis and development of PLC systems. Especially for the study of PLC networks, the so-called bottom-up channel emulation using transmission-line theory (TLT) is the proper method. The underlying assumption of this approach is that the power line propagation characteristics are known. That is, the per-unit length (PUL) parameters of the power lines need to be computed. However, especially for multi-conductor lines this can be theoretically and computationally challenging. In this paper, we present a compact overview of the computation of PUL parameters. We briefly discuss the assumptions associated with different solution methods and develop a numerical solver applicable to general multi-conductor transmission lines. Considering a sample set of different cable types, we demonstrate the effects of simplifying assumptions on the accuracy of computed PUL parameters and channel frequency responses.","PeriodicalId":222123,"journal":{"name":"2015 IEEE International Symposium on Power Line Communications and Its Applications (ISPLC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"On PLC channel emulation via transmission line theory\",\"authors\":\"Florian Gruber, L. Lampe\",\"doi\":\"10.1109/ISPLC.2015.7147610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emulation of power line communication (PLC) channels is an important tool for the analysis and development of PLC systems. Especially for the study of PLC networks, the so-called bottom-up channel emulation using transmission-line theory (TLT) is the proper method. The underlying assumption of this approach is that the power line propagation characteristics are known. That is, the per-unit length (PUL) parameters of the power lines need to be computed. However, especially for multi-conductor lines this can be theoretically and computationally challenging. In this paper, we present a compact overview of the computation of PUL parameters. We briefly discuss the assumptions associated with different solution methods and develop a numerical solver applicable to general multi-conductor transmission lines. Considering a sample set of different cable types, we demonstrate the effects of simplifying assumptions on the accuracy of computed PUL parameters and channel frequency responses.\",\"PeriodicalId\":222123,\"journal\":{\"name\":\"2015 IEEE International Symposium on Power Line Communications and Its Applications (ISPLC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Symposium on Power Line Communications and Its Applications (ISPLC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPLC.2015.7147610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Power Line Communications and Its Applications (ISPLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPLC.2015.7147610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On PLC channel emulation via transmission line theory
The emulation of power line communication (PLC) channels is an important tool for the analysis and development of PLC systems. Especially for the study of PLC networks, the so-called bottom-up channel emulation using transmission-line theory (TLT) is the proper method. The underlying assumption of this approach is that the power line propagation characteristics are known. That is, the per-unit length (PUL) parameters of the power lines need to be computed. However, especially for multi-conductor lines this can be theoretically and computationally challenging. In this paper, we present a compact overview of the computation of PUL parameters. We briefly discuss the assumptions associated with different solution methods and develop a numerical solver applicable to general multi-conductor transmission lines. Considering a sample set of different cable types, we demonstrate the effects of simplifying assumptions on the accuracy of computed PUL parameters and channel frequency responses.