基于灰度热图像和卷积神经网络的手势分类

Rakesh Reddy Yakkati, Sreenivasa Reddy Yeduri, Linga Reddy Cenkeramaddi
{"title":"基于灰度热图像和卷积神经网络的手势分类","authors":"Rakesh Reddy Yakkati, Sreenivasa Reddy Yeduri, Linga Reddy Cenkeramaddi","doi":"10.1109/iSES52644.2021.00035","DOIUrl":null,"url":null,"abstract":"We propose a convolutional neural network for classifying grayscale images of hand gestures in this paper. We look at ten different hand gestures collected from various people using a thermal camera for classification. The proposed model’s performance in terms of classification accuracy and inference time is then compared to that of other benchmark models. Using extensive results, we show that the proposed model achieves higher classification accuracy while using a smaller model size. In terms of inference time, we show that the proposed model outperforms benchmark models.","PeriodicalId":293167,"journal":{"name":"2021 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Hand Gesture Classification Using Grayscale Thermal Images and Convolutional Neural Network\",\"authors\":\"Rakesh Reddy Yakkati, Sreenivasa Reddy Yeduri, Linga Reddy Cenkeramaddi\",\"doi\":\"10.1109/iSES52644.2021.00035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a convolutional neural network for classifying grayscale images of hand gestures in this paper. We look at ten different hand gestures collected from various people using a thermal camera for classification. The proposed model’s performance in terms of classification accuracy and inference time is then compared to that of other benchmark models. Using extensive results, we show that the proposed model achieves higher classification accuracy while using a smaller model size. In terms of inference time, we show that the proposed model outperforms benchmark models.\",\"PeriodicalId\":293167,\"journal\":{\"name\":\"2021 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iSES52644.2021.00035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSES52644.2021.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种用于手势灰度图像分类的卷积神经网络。我们用热像仪对不同人的手势进行分类。然后将该模型在分类精度和推理时间方面的性能与其他基准模型进行比较。通过广泛的结果,我们表明所提出的模型在使用较小的模型尺寸的情况下实现了更高的分类精度。在推理时间方面,我们表明所提出的模型优于基准模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hand Gesture Classification Using Grayscale Thermal Images and Convolutional Neural Network
We propose a convolutional neural network for classifying grayscale images of hand gestures in this paper. We look at ten different hand gestures collected from various people using a thermal camera for classification. The proposed model’s performance in terms of classification accuracy and inference time is then compared to that of other benchmark models. Using extensive results, we show that the proposed model achieves higher classification accuracy while using a smaller model size. In terms of inference time, we show that the proposed model outperforms benchmark models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信