自然语言文本大语料库生成的有限状态模型

Domenico Cantone, S. Cristofaro, S. Faro, Emanuele Giaquinta
{"title":"自然语言文本大语料库生成的有限状态模型","authors":"Domenico Cantone, S. Cristofaro, S. Faro, Emanuele Giaquinta","doi":"10.3233/978-1-58603-975-2-175","DOIUrl":null,"url":null,"abstract":"Natural languages are probably one of the most common type of input for text processing algorithms. Therefore, it is often desirable to have a large training/testing set of input of this kind, especially when dealing with algorithms tuned for natural language texts. In many cases the problem due to the lack of big corpus of natural language texts can be solved by simply concatenating a set of collected texts, even with heterogeneous contexts and by different authors. \n \nIn this note we present a preliminary study on a finite state model for text generation which maintains statistical and structural characteristics of natural language texts, i.e., Zipf's law and inverse-rank power law, thus providing a very good approximation for testing purposes.","PeriodicalId":286427,"journal":{"name":"Finite-State Methods and Natural Language Processing","volume":"258 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Finite State Models for the Generation of Large Corpora of Natural Language Texts\",\"authors\":\"Domenico Cantone, S. Cristofaro, S. Faro, Emanuele Giaquinta\",\"doi\":\"10.3233/978-1-58603-975-2-175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural languages are probably one of the most common type of input for text processing algorithms. Therefore, it is often desirable to have a large training/testing set of input of this kind, especially when dealing with algorithms tuned for natural language texts. In many cases the problem due to the lack of big corpus of natural language texts can be solved by simply concatenating a set of collected texts, even with heterogeneous contexts and by different authors. \\n \\nIn this note we present a preliminary study on a finite state model for text generation which maintains statistical and structural characteristics of natural language texts, i.e., Zipf's law and inverse-rank power law, thus providing a very good approximation for testing purposes.\",\"PeriodicalId\":286427,\"journal\":{\"name\":\"Finite-State Methods and Natural Language Processing\",\"volume\":\"258 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite-State Methods and Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/978-1-58603-975-2-175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite-State Methods and Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/978-1-58603-975-2-175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

自然语言可能是文本处理算法中最常见的输入类型之一。因此,通常需要有这类输入的大型训练/测试集,特别是在处理针对自然语言文本进行调优的算法时。在许多情况下,由于缺乏大型自然语言文本语料库而导致的问题可以通过简单地连接一组收集到的文本来解决,即使是具有异构上下文和不同作者的文本。在本文中,我们对文本生成的有限状态模型进行了初步研究,该模型保持了自然语言文本的统计和结构特征,即Zipf定律和逆秩幂定律,从而为测试目的提供了非常好的近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite State Models for the Generation of Large Corpora of Natural Language Texts
Natural languages are probably one of the most common type of input for text processing algorithms. Therefore, it is often desirable to have a large training/testing set of input of this kind, especially when dealing with algorithms tuned for natural language texts. In many cases the problem due to the lack of big corpus of natural language texts can be solved by simply concatenating a set of collected texts, even with heterogeneous contexts and by different authors. In this note we present a preliminary study on a finite state model for text generation which maintains statistical and structural characteristics of natural language texts, i.e., Zipf's law and inverse-rank power law, thus providing a very good approximation for testing purposes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信