基于面向的英语和印地语自以为是的社交媒体文本情感分析

Kavitha Karimbi Mahesh, A. Nishmitha, Gowda Karthik Balgopal, Kausalya K Naik, Mranali Gourish Gaonkar
{"title":"基于面向的英语和印地语自以为是的社交媒体文本情感分析","authors":"Kavitha Karimbi Mahesh, A. Nishmitha, Gowda Karthik Balgopal, Kausalya K Naik, Mranali Gourish Gaonkar","doi":"10.1109/ICMLA55696.2022.00235","DOIUrl":null,"url":null,"abstract":"We present a lexicon-based approach for classifying opinionated social media texts in English and Hindi. The effect of conjunctions, degree modifiers, negations, emojis and emoticons in scoring the intensity of opinion expressed is further explored. Using a manually built Hindi polarity lexicon, we achieve an accuracy of 86.45% in classifying 2,717 Hindi reviews. A real-time analysis on YouTube reviews showed 86% accuracy for English review classification task.","PeriodicalId":128160,"journal":{"name":"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aspect-based Sentiment Analysis of English and Hindi Opinionated Social Media Texts\",\"authors\":\"Kavitha Karimbi Mahesh, A. Nishmitha, Gowda Karthik Balgopal, Kausalya K Naik, Mranali Gourish Gaonkar\",\"doi\":\"10.1109/ICMLA55696.2022.00235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a lexicon-based approach for classifying opinionated social media texts in English and Hindi. The effect of conjunctions, degree modifiers, negations, emojis and emoticons in scoring the intensity of opinion expressed is further explored. Using a manually built Hindi polarity lexicon, we achieve an accuracy of 86.45% in classifying 2,717 Hindi reviews. A real-time analysis on YouTube reviews showed 86% accuracy for English review classification task.\",\"PeriodicalId\":128160,\"journal\":{\"name\":\"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA55696.2022.00235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA55696.2022.00235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种基于词典的方法来分类英语和印地语中固执己见的社交媒体文本。进一步探讨了连词、程度修饰语、否定、表情符号和表情符号在评价意见表达强度方面的作用。使用人工构建的印地语极性词典,我们对2,717篇印地语评论进行分类,准确率达到86.45%。对YouTube评论的实时分析显示,英语评论分类任务的准确率为86%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aspect-based Sentiment Analysis of English and Hindi Opinionated Social Media Texts
We present a lexicon-based approach for classifying opinionated social media texts in English and Hindi. The effect of conjunctions, degree modifiers, negations, emojis and emoticons in scoring the intensity of opinion expressed is further explored. Using a manually built Hindi polarity lexicon, we achieve an accuracy of 86.45% in classifying 2,717 Hindi reviews. A real-time analysis on YouTube reviews showed 86% accuracy for English review classification task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信