M Battino, E Ferri, A Gorini, R F Villa, J F Rodriguez Huertas, P Fiorella, M L Genova, G Lenaz, M Marchetti
{"title":"辅酶Q同源物的自然分布和发生。","authors":"M Battino, E Ferri, A Gorini, R F Villa, J F Rodriguez Huertas, P Fiorella, M L Genova, G Lenaz, M Marchetti","doi":"10.3109/09687689009025839","DOIUrl":null,"url":null,"abstract":"<p><p>The knowledge of coenzyme Q levels in tissues, organs, and subcellular compartments is of outstanding interest. A wide amount of data regarding coenzyme Q distribution and occurrence was collected in the last decades; nevertheless the data are often hard to compare because of the different extraction methods and different analytical techniques used. We have undertaken a systematic study for detecting the ubiquinone content in subcellular compartments, cells, and whole-tissue homogenates by a previously standardized HPLC method performed after an extraction procedure identical for all samples. It was confirmed that the major coenzyme Q homologue in rat tissues is coenzyme Q9; however, it was pointed out that all the rodents samples tested contain more than one coenzyme Q homologue. The coenzyme Q homologue distribution is tissue dependent with relatively high coenzyme Q10 content in brain mitochondria, irrespective of the rat strain used. There is no constant relationship of the coenzyme Q content in mitochondria and microsomes fractions. Most organisms tested (including other mammals, bird and fish specimens) have only coenzyme Q10, while the protozoan Tetrahymena pyriformis contains only coenzyme Q8.</p>","PeriodicalId":18448,"journal":{"name":"Membrane biochemistry","volume":"9 3","pages":"179-90"},"PeriodicalIF":0.0000,"publicationDate":"1990-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/09687689009025839","citationCount":"118","resultStr":"{\"title\":\"Natural distribution and occurrence of coenzyme Q homologues.\",\"authors\":\"M Battino, E Ferri, A Gorini, R F Villa, J F Rodriguez Huertas, P Fiorella, M L Genova, G Lenaz, M Marchetti\",\"doi\":\"10.3109/09687689009025839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The knowledge of coenzyme Q levels in tissues, organs, and subcellular compartments is of outstanding interest. A wide amount of data regarding coenzyme Q distribution and occurrence was collected in the last decades; nevertheless the data are often hard to compare because of the different extraction methods and different analytical techniques used. We have undertaken a systematic study for detecting the ubiquinone content in subcellular compartments, cells, and whole-tissue homogenates by a previously standardized HPLC method performed after an extraction procedure identical for all samples. It was confirmed that the major coenzyme Q homologue in rat tissues is coenzyme Q9; however, it was pointed out that all the rodents samples tested contain more than one coenzyme Q homologue. The coenzyme Q homologue distribution is tissue dependent with relatively high coenzyme Q10 content in brain mitochondria, irrespective of the rat strain used. There is no constant relationship of the coenzyme Q content in mitochondria and microsomes fractions. Most organisms tested (including other mammals, bird and fish specimens) have only coenzyme Q10, while the protozoan Tetrahymena pyriformis contains only coenzyme Q8.</p>\",\"PeriodicalId\":18448,\"journal\":{\"name\":\"Membrane biochemistry\",\"volume\":\"9 3\",\"pages\":\"179-90\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3109/09687689009025839\",\"citationCount\":\"118\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membrane biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3109/09687689009025839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membrane biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/09687689009025839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Natural distribution and occurrence of coenzyme Q homologues.
The knowledge of coenzyme Q levels in tissues, organs, and subcellular compartments is of outstanding interest. A wide amount of data regarding coenzyme Q distribution and occurrence was collected in the last decades; nevertheless the data are often hard to compare because of the different extraction methods and different analytical techniques used. We have undertaken a systematic study for detecting the ubiquinone content in subcellular compartments, cells, and whole-tissue homogenates by a previously standardized HPLC method performed after an extraction procedure identical for all samples. It was confirmed that the major coenzyme Q homologue in rat tissues is coenzyme Q9; however, it was pointed out that all the rodents samples tested contain more than one coenzyme Q homologue. The coenzyme Q homologue distribution is tissue dependent with relatively high coenzyme Q10 content in brain mitochondria, irrespective of the rat strain used. There is no constant relationship of the coenzyme Q content in mitochondria and microsomes fractions. Most organisms tested (including other mammals, bird and fish specimens) have only coenzyme Q10, while the protozoan Tetrahymena pyriformis contains only coenzyme Q8.