基于表面肌电和机器学习的办公综合症静态疲劳检测

Parama Pratummas, Chaiyaporn Khemapatpapan
{"title":"基于表面肌电和机器学习的办公综合症静态疲劳检测","authors":"Parama Pratummas, Chaiyaporn Khemapatpapan","doi":"10.1109/ICICyTA53712.2021.9689169","DOIUrl":null,"url":null,"abstract":"Office syndrome is one of the important health issues worldwide. Sitting in one position for an extended period of time causes muscle fatigue. This study proposed static fatigue detection in office syndrome using surface electromyography (sEMG) and machine learning. The sEMG was recorded by EMG sensor board connected with NodeMCU V2 ESP8266 during sitting position with surface electrodes on the shoulder. The signals were extracted and preprocessed to obtain different features of datasets. Six machine learning models (Logistic Regression, Support Vector Machine, Naive Bayes, k-nearest Neighbors, Decision Tree, and Multi-layer Perceptron) with seven features (mean, integrated EMG, mean absolute value, mean absolute value1, mean absolute value2, simple square integral, and root mean square) of original datasets and featured-selected data were trained and tested, predicting an output class of fatigue or non-fatigue. Featured-selected data in this research were categorized to feature set I (mean, integrated EMG, mean absolute value, simple square integral, and root mean square) and feature set II (integrated EMG, mean absolute value2, and simple square integral). Consequently, multi-layer perceptron on feature set II has the best accuracy at 99.6690 percent with fit time of 18.322849 seconds. However, considered on the accuracy of 99.2482 percent and the fit time of 0.027955 seconds, decision tree could be an alternate machine learning model in this study.","PeriodicalId":448148,"journal":{"name":"2021 International Conference on Intelligent Cybernetics Technology & Applications (ICICyTA)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Static Fatigue Detection in Office Syndrome using sEMG and Machine Learning\",\"authors\":\"Parama Pratummas, Chaiyaporn Khemapatpapan\",\"doi\":\"10.1109/ICICyTA53712.2021.9689169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Office syndrome is one of the important health issues worldwide. Sitting in one position for an extended period of time causes muscle fatigue. This study proposed static fatigue detection in office syndrome using surface electromyography (sEMG) and machine learning. The sEMG was recorded by EMG sensor board connected with NodeMCU V2 ESP8266 during sitting position with surface electrodes on the shoulder. The signals were extracted and preprocessed to obtain different features of datasets. Six machine learning models (Logistic Regression, Support Vector Machine, Naive Bayes, k-nearest Neighbors, Decision Tree, and Multi-layer Perceptron) with seven features (mean, integrated EMG, mean absolute value, mean absolute value1, mean absolute value2, simple square integral, and root mean square) of original datasets and featured-selected data were trained and tested, predicting an output class of fatigue or non-fatigue. Featured-selected data in this research were categorized to feature set I (mean, integrated EMG, mean absolute value, simple square integral, and root mean square) and feature set II (integrated EMG, mean absolute value2, and simple square integral). Consequently, multi-layer perceptron on feature set II has the best accuracy at 99.6690 percent with fit time of 18.322849 seconds. However, considered on the accuracy of 99.2482 percent and the fit time of 0.027955 seconds, decision tree could be an alternate machine learning model in this study.\",\"PeriodicalId\":448148,\"journal\":{\"name\":\"2021 International Conference on Intelligent Cybernetics Technology & Applications (ICICyTA)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Intelligent Cybernetics Technology & Applications (ICICyTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICyTA53712.2021.9689169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Intelligent Cybernetics Technology & Applications (ICICyTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICyTA53712.2021.9689169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

办公室综合症是世界范围内重要的健康问题之一。长时间保持一个姿势会导致肌肉疲劳。本研究提出了使用表面肌电图(sEMG)和机器学习来检测办公室综合症的静态疲劳。通过与NodeMCU V2 ESP8266连接的肌电信号传感器板,将表面电极置于肩部,记录坐姿时的肌电信号。对信号进行提取和预处理,得到数据集的不同特征。六种机器学习模型(逻辑回归、支持向量机、朴素贝叶斯、k近邻、决策树和多层感知器)具有原始数据集和特征选择数据的七个特征(均值、综合肌电图、均值绝对值、均值绝对值e1、均值绝对值e2、简单平方积分和均方根)进行训练和测试,预测疲劳或非疲劳的输出类别。本研究选取的特征数据分为特征集I(均值、综合肌电信号、均值绝对值、简单平方积分、均方根)和特征集II(综合肌电信号、均值绝对值2、简单平方积分)。因此,特征集II上的多层感知器准确率最高,达到99.6690%,拟合时间为18.322849秒。然而,考虑到99.2482%的准确率和0.027955秒的拟合时间,决策树可以作为本研究的替代机器学习模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Static Fatigue Detection in Office Syndrome using sEMG and Machine Learning
Office syndrome is one of the important health issues worldwide. Sitting in one position for an extended period of time causes muscle fatigue. This study proposed static fatigue detection in office syndrome using surface electromyography (sEMG) and machine learning. The sEMG was recorded by EMG sensor board connected with NodeMCU V2 ESP8266 during sitting position with surface electrodes on the shoulder. The signals were extracted and preprocessed to obtain different features of datasets. Six machine learning models (Logistic Regression, Support Vector Machine, Naive Bayes, k-nearest Neighbors, Decision Tree, and Multi-layer Perceptron) with seven features (mean, integrated EMG, mean absolute value, mean absolute value1, mean absolute value2, simple square integral, and root mean square) of original datasets and featured-selected data were trained and tested, predicting an output class of fatigue or non-fatigue. Featured-selected data in this research were categorized to feature set I (mean, integrated EMG, mean absolute value, simple square integral, and root mean square) and feature set II (integrated EMG, mean absolute value2, and simple square integral). Consequently, multi-layer perceptron on feature set II has the best accuracy at 99.6690 percent with fit time of 18.322849 seconds. However, considered on the accuracy of 99.2482 percent and the fit time of 0.027955 seconds, decision tree could be an alternate machine learning model in this study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信