{"title":"由海星卵母细胞制备的无细胞翻译系统忠实地反映了体内活性。mRNA和起始因子刺激未成熟卵母细胞上清液。","authors":"Z Xu, M B Hille","doi":"10.1091/mbc.1.13.1057","DOIUrl":null,"url":null,"abstract":"<p><p>Meiotic maturation stimulates a change in the translation of stored mRNAs: mRNAs encoding proteins needed for growth of oocytes are translated before meiotic maturation, whereas those encoding proteins required for cleavage are translated after meiotic maturation. Studies of translational regulation during meiotic maturation have been limited by the lack of translationally active cell-free supernatants. Starfish oocytes are ideal for preparing cell-free translation systems because experimental application of the hormone 1-methyladenine induces their maturation, synchronizing meiosis. We have prepared such systems from both immature and mature oocytes of starfish. Changes in protein synthesis rates and the specificity of proteins synthesized in these cell-free translation supernatants mimic those seen in vivo. Supernatants both from immature and mature oocytes have a high capacity to initiate new translation because 90% of the proteins made are newly initiated from mRNAs. Cell-free supernatants from mature oocytes have a much higher rate of initiation of translation than those from immature oocytes and use the 43S preinitiation complexes more efficiently in initiation of translation. Similarly, we have shown that mRNAs and initiation factors are rate limiting in cell-free translation systems prepared from immature oocytes. In addition, cell-free translation systems prepared from immature oocytes are only slightly, if at all, inhibitory to cell-free translation systems from mature oocytes. Thus, soluble inhibitors, if they exist, are rapidly converted by cell-free supernatants from mature oocytes. The similarities between translation in our starfish cell-free translation systems and in intact oocytes suggests that the cell-free translation systems will be useful tools for further studies of maturation events and translational control during meiosis.</p>","PeriodicalId":9671,"journal":{"name":"Cell regulation","volume":"1 13","pages":"1057-67"},"PeriodicalIF":0.0000,"publicationDate":"1990-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1091/mbc.1.13.1057","citationCount":"8","resultStr":"{\"title\":\"Cell-free translation systems prepared from starfish oocytes faithfully reflect in vivo activity; mRNA and initiation factors stimulate supernatants from immature oocytes.\",\"authors\":\"Z Xu, M B Hille\",\"doi\":\"10.1091/mbc.1.13.1057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Meiotic maturation stimulates a change in the translation of stored mRNAs: mRNAs encoding proteins needed for growth of oocytes are translated before meiotic maturation, whereas those encoding proteins required for cleavage are translated after meiotic maturation. Studies of translational regulation during meiotic maturation have been limited by the lack of translationally active cell-free supernatants. Starfish oocytes are ideal for preparing cell-free translation systems because experimental application of the hormone 1-methyladenine induces their maturation, synchronizing meiosis. We have prepared such systems from both immature and mature oocytes of starfish. Changes in protein synthesis rates and the specificity of proteins synthesized in these cell-free translation supernatants mimic those seen in vivo. Supernatants both from immature and mature oocytes have a high capacity to initiate new translation because 90% of the proteins made are newly initiated from mRNAs. Cell-free supernatants from mature oocytes have a much higher rate of initiation of translation than those from immature oocytes and use the 43S preinitiation complexes more efficiently in initiation of translation. Similarly, we have shown that mRNAs and initiation factors are rate limiting in cell-free translation systems prepared from immature oocytes. In addition, cell-free translation systems prepared from immature oocytes are only slightly, if at all, inhibitory to cell-free translation systems from mature oocytes. Thus, soluble inhibitors, if they exist, are rapidly converted by cell-free supernatants from mature oocytes. The similarities between translation in our starfish cell-free translation systems and in intact oocytes suggests that the cell-free translation systems will be useful tools for further studies of maturation events and translational control during meiosis.</p>\",\"PeriodicalId\":9671,\"journal\":{\"name\":\"Cell regulation\",\"volume\":\"1 13\",\"pages\":\"1057-67\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1091/mbc.1.13.1057\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell regulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1091/mbc.1.13.1057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell regulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1091/mbc.1.13.1057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cell-free translation systems prepared from starfish oocytes faithfully reflect in vivo activity; mRNA and initiation factors stimulate supernatants from immature oocytes.
Meiotic maturation stimulates a change in the translation of stored mRNAs: mRNAs encoding proteins needed for growth of oocytes are translated before meiotic maturation, whereas those encoding proteins required for cleavage are translated after meiotic maturation. Studies of translational regulation during meiotic maturation have been limited by the lack of translationally active cell-free supernatants. Starfish oocytes are ideal for preparing cell-free translation systems because experimental application of the hormone 1-methyladenine induces their maturation, synchronizing meiosis. We have prepared such systems from both immature and mature oocytes of starfish. Changes in protein synthesis rates and the specificity of proteins synthesized in these cell-free translation supernatants mimic those seen in vivo. Supernatants both from immature and mature oocytes have a high capacity to initiate new translation because 90% of the proteins made are newly initiated from mRNAs. Cell-free supernatants from mature oocytes have a much higher rate of initiation of translation than those from immature oocytes and use the 43S preinitiation complexes more efficiently in initiation of translation. Similarly, we have shown that mRNAs and initiation factors are rate limiting in cell-free translation systems prepared from immature oocytes. In addition, cell-free translation systems prepared from immature oocytes are only slightly, if at all, inhibitory to cell-free translation systems from mature oocytes. Thus, soluble inhibitors, if they exist, are rapidly converted by cell-free supernatants from mature oocytes. The similarities between translation in our starfish cell-free translation systems and in intact oocytes suggests that the cell-free translation systems will be useful tools for further studies of maturation events and translational control during meiosis.