{"title":"域上线性代数的微分的李代数","authors":"A. Y. Sultanov, M. Glebova, O.V. Bolotnikova","doi":"10.5922/0321-4796-2021-52-12","DOIUrl":null,"url":null,"abstract":"In this paper, we study a system of linear equations that define the Lie algebra of differentiations DerA of an arbitrary finite-dimensional linear algebra over a field. A system of equations is obtained, which is satisfied by the components of an arbitrary differentiation with respect to a fixed basis of algebra A. This system is a system of linear homogeneous equations. The law of transformation of the matrix of this system is proved. The invariance of the rank of the matrix of this system in the transition to a new basis in algebra is proved. Next, we consider the possibility of applying the obtained results in differential geometry when estimating the dimensions of groups of affine transformations from above. As an example, the method of I. P. Egorov is given for studying the dimensions of Lie algebras of affine vector fields on smooth manifolds equipped with linear connections having non-zero torsion tensor fields.","PeriodicalId":114406,"journal":{"name":"Differential Geometry of Manifolds of Figures","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Lie algebras of differentiations of linear algebras over a field\",\"authors\":\"A. Y. Sultanov, M. Glebova, O.V. Bolotnikova\",\"doi\":\"10.5922/0321-4796-2021-52-12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study a system of linear equations that define the Lie algebra of differentiations DerA of an arbitrary finite-dimensional linear algebra over a field. A system of equations is obtained, which is satisfied by the components of an arbitrary differentiation with respect to a fixed basis of algebra A. This system is a system of linear homogeneous equations. The law of transformation of the matrix of this system is proved. The invariance of the rank of the matrix of this system in the transition to a new basis in algebra is proved. Next, we consider the possibility of applying the obtained results in differential geometry when estimating the dimensions of groups of affine transformations from above. As an example, the method of I. P. Egorov is given for studying the dimensions of Lie algebras of affine vector fields on smooth manifolds equipped with linear connections having non-zero torsion tensor fields.\",\"PeriodicalId\":114406,\"journal\":{\"name\":\"Differential Geometry of Manifolds of Figures\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry of Manifolds of Figures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5922/0321-4796-2021-52-12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry of Manifolds of Figures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5922/0321-4796-2021-52-12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
本文研究了一个线性方程组,它定义了域上任意有限维线性代数的微分李代数DerA。得到了一个方程组,该方程组由关于代数A的固定基的任意微分的分量所满足。这个方程组是一个线性齐次方程组。证明了该系统矩阵的变换规律。在代数上证明了该系统的矩阵在向新基转移时的秩不变性。接下来,我们考虑应用所得结果在微分几何中估计仿射变换群的维数的可能性。作为一个例子,本文给出了I. P. Egorov在具有非零扭转张量场的线性连接的光滑流形上研究仿射向量场李代数维数的方法。
Lie algebras of differentiations of linear algebras over a field
In this paper, we study a system of linear equations that define the Lie algebra of differentiations DerA of an arbitrary finite-dimensional linear algebra over a field. A system of equations is obtained, which is satisfied by the components of an arbitrary differentiation with respect to a fixed basis of algebra A. This system is a system of linear homogeneous equations. The law of transformation of the matrix of this system is proved. The invariance of the rank of the matrix of this system in the transition to a new basis in algebra is proved. Next, we consider the possibility of applying the obtained results in differential geometry when estimating the dimensions of groups of affine transformations from above. As an example, the method of I. P. Egorov is given for studying the dimensions of Lie algebras of affine vector fields on smooth manifolds equipped with linear connections having non-zero torsion tensor fields.