使用创新的数据分析和智能技术来对抗阿片类药物过量危机

Nasibeh Zohrabi, Jacqueline B. Britz, A. Krist, Mostafa Zaman, S. Abdelwahed
{"title":"使用创新的数据分析和智能技术来对抗阿片类药物过量危机","authors":"Nasibeh Zohrabi, Jacqueline B. Britz, A. Krist, Mostafa Zaman, S. Abdelwahed","doi":"10.1109/SMARTCOMP58114.2023.00052","DOIUrl":null,"url":null,"abstract":"Drug overdose is now the leading cause of death for those under 50 in the United States. Inadequate data present a challenge for city officials, which prevents them from investigating the scale of the opioid overdose crisis. Various factors need to be considered in the prediction model for estimating the level of drug consumption, type of drug, and the location of the affected area. The aim of this project is to investigate several prediction and analysis models for forecasting drug use and overdoses by considering diverse data obtained from different sources, including sewage-based drug epidemiology, healthcare data, social networks data mining, and police data. Such analysis will help to formulate more effective policies and programs to combat fatal opioid overdoses.","PeriodicalId":163556,"journal":{"name":"2023 IEEE International Conference on Smart Computing (SMARTCOMP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Innovations in Data Analytics and Smart Technologies to Fight Opioid Overdose Crisis\",\"authors\":\"Nasibeh Zohrabi, Jacqueline B. Britz, A. Krist, Mostafa Zaman, S. Abdelwahed\",\"doi\":\"10.1109/SMARTCOMP58114.2023.00052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drug overdose is now the leading cause of death for those under 50 in the United States. Inadequate data present a challenge for city officials, which prevents them from investigating the scale of the opioid overdose crisis. Various factors need to be considered in the prediction model for estimating the level of drug consumption, type of drug, and the location of the affected area. The aim of this project is to investigate several prediction and analysis models for forecasting drug use and overdoses by considering diverse data obtained from different sources, including sewage-based drug epidemiology, healthcare data, social networks data mining, and police data. Such analysis will help to formulate more effective policies and programs to combat fatal opioid overdoses.\",\"PeriodicalId\":163556,\"journal\":{\"name\":\"2023 IEEE International Conference on Smart Computing (SMARTCOMP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Smart Computing (SMARTCOMP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMARTCOMP58114.2023.00052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Smart Computing (SMARTCOMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTCOMP58114.2023.00052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

药物过量现在是美国50岁以下人群死亡的主要原因。数据不足给城市官员带来了挑战,这阻碍了他们调查阿片类药物过量危机的规模。在预测模型中,需要考虑各种因素,以估计药物消费水平、药物类型和受影响区域的位置。该项目的目的是通过考虑从不同来源获得的不同数据,包括基于污水的药物流行病学、医疗保健数据、社交网络数据挖掘和警察数据,研究预测药物使用和过量的几种预测和分析模型。这种分析将有助于制定更有效的政策和计划,以打击致命的阿片类药物过量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Innovations in Data Analytics and Smart Technologies to Fight Opioid Overdose Crisis
Drug overdose is now the leading cause of death for those under 50 in the United States. Inadequate data present a challenge for city officials, which prevents them from investigating the scale of the opioid overdose crisis. Various factors need to be considered in the prediction model for estimating the level of drug consumption, type of drug, and the location of the affected area. The aim of this project is to investigate several prediction and analysis models for forecasting drug use and overdoses by considering diverse data obtained from different sources, including sewage-based drug epidemiology, healthcare data, social networks data mining, and police data. Such analysis will help to formulate more effective policies and programs to combat fatal opioid overdoses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信