Rong Ding, Zhaoxing Yang, Yifei Wei, Haiming Jin, Xinbing Wang
{"title":"基于出租车辆的城市人群感知多智能体强化学习","authors":"Rong Ding, Zhaoxing Yang, Yifei Wei, Haiming Jin, Xinbing Wang","doi":"10.1109/INFOCOM42981.2021.9488713","DOIUrl":null,"url":null,"abstract":"Recently, vehicular crowd sensing (VCS) that leverages sensor-equipped urban vehicles to collect city-scale sensory data has emerged as a promising paradigm for urban sensing. Nowadays, a wide spectrum of VCS tasks are carried out by for-hire vehicles (FHVs) due to various hardware and software constraints that are difficult for private vehicles to satisfy. However, such FHV-enabled VCS systems face a fundamental yet unsolved problem of striking a balance between the order-serving and sensing outcomes. To address this problem, we propose a novel graph convolutional cooperative multi-agent reinforcement learning (GCC-MARL) framework, which helps FHVs make distributed routing decisions that cooperatively optimize the system-wide global objective. Specifically, GCC-MARL meticulously assigns credits to agents in the training process to effectively stimulate cooperation, represents agents’ actions by a carefully chosen statistics to cope with the variable agent scales, and integrates graph convolution to capture useful spatial features from complex large-scale urban road networks. We conduct extensive experiments with a real-world dataset collected in Shenzhen, China, containing around 1 million trajectories and 50 thousand orders of 553 taxis per-day from June 1st to 30th, 2017. Our experiment results show that GCC-MARL outperforms state-of-the-art baseline methods in order-serving revenue, as well as sensing coverage and quality.","PeriodicalId":293079,"journal":{"name":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Multi-Agent Reinforcement Learning for Urban Crowd Sensing with For-Hire Vehicles\",\"authors\":\"Rong Ding, Zhaoxing Yang, Yifei Wei, Haiming Jin, Xinbing Wang\",\"doi\":\"10.1109/INFOCOM42981.2021.9488713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, vehicular crowd sensing (VCS) that leverages sensor-equipped urban vehicles to collect city-scale sensory data has emerged as a promising paradigm for urban sensing. Nowadays, a wide spectrum of VCS tasks are carried out by for-hire vehicles (FHVs) due to various hardware and software constraints that are difficult for private vehicles to satisfy. However, such FHV-enabled VCS systems face a fundamental yet unsolved problem of striking a balance between the order-serving and sensing outcomes. To address this problem, we propose a novel graph convolutional cooperative multi-agent reinforcement learning (GCC-MARL) framework, which helps FHVs make distributed routing decisions that cooperatively optimize the system-wide global objective. Specifically, GCC-MARL meticulously assigns credits to agents in the training process to effectively stimulate cooperation, represents agents’ actions by a carefully chosen statistics to cope with the variable agent scales, and integrates graph convolution to capture useful spatial features from complex large-scale urban road networks. We conduct extensive experiments with a real-world dataset collected in Shenzhen, China, containing around 1 million trajectories and 50 thousand orders of 553 taxis per-day from June 1st to 30th, 2017. Our experiment results show that GCC-MARL outperforms state-of-the-art baseline methods in order-serving revenue, as well as sensing coverage and quality.\",\"PeriodicalId\":293079,\"journal\":{\"name\":\"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOCOM42981.2021.9488713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOM42981.2021.9488713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-Agent Reinforcement Learning for Urban Crowd Sensing with For-Hire Vehicles
Recently, vehicular crowd sensing (VCS) that leverages sensor-equipped urban vehicles to collect city-scale sensory data has emerged as a promising paradigm for urban sensing. Nowadays, a wide spectrum of VCS tasks are carried out by for-hire vehicles (FHVs) due to various hardware and software constraints that are difficult for private vehicles to satisfy. However, such FHV-enabled VCS systems face a fundamental yet unsolved problem of striking a balance between the order-serving and sensing outcomes. To address this problem, we propose a novel graph convolutional cooperative multi-agent reinforcement learning (GCC-MARL) framework, which helps FHVs make distributed routing decisions that cooperatively optimize the system-wide global objective. Specifically, GCC-MARL meticulously assigns credits to agents in the training process to effectively stimulate cooperation, represents agents’ actions by a carefully chosen statistics to cope with the variable agent scales, and integrates graph convolution to capture useful spatial features from complex large-scale urban road networks. We conduct extensive experiments with a real-world dataset collected in Shenzhen, China, containing around 1 million trajectories and 50 thousand orders of 553 taxis per-day from June 1st to 30th, 2017. Our experiment results show that GCC-MARL outperforms state-of-the-art baseline methods in order-serving revenue, as well as sensing coverage and quality.