基于柯西随机投影的稀疏信号快速重构算法

Ana B. Ramirez, G. Arce, Brian M. Sadler
{"title":"基于柯西随机投影的稀疏信号快速重构算法","authors":"Ana B. Ramirez, G. Arce, Brian M. Sadler","doi":"10.5281/ZENODO.42175","DOIUrl":null,"url":null,"abstract":"Recent work on dimensionality reduction using Cauchy random projections has emerged for applications where ℓ<sub>1</sub> distance preservation is preferred. An original sparse signal b ϵ ℝ<sup>n</sup> is multiplied by a Cauchy random matrix <b>R</b> ϵ ℝ<sup>n×k</sup> (k≪n), resulting in a projected vector c ϵ ℝ<sup>k</sup>. Two approaches for fast recover of b from the Cauchy vector c are proposed. The two algorithms are based on a regularized coordinate-descent Myriad regression using both ℓ<sub>0</sub> and convex relaxation as sparsity inducing terms. The key element is to start, in the first iteration, by finding the optimal estimate value for each coordinate, and selectively updating only the coordinates with rapid descent in subsequent iterations. For the particular case of the ℓ<sub>0</sub> regularized approach, an approximation function for the ℓ<sub>0</sub>-norm is given due to it is non-differentiable norm [1]. Performance comparisons of the proposed approaches to the original regularized coordinate-descent method are included.","PeriodicalId":409817,"journal":{"name":"2010 18th European Signal Processing Conference","volume":"8 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Fast algorithms for reconstruction of sparse signals from cauchy random projections\",\"authors\":\"Ana B. Ramirez, G. Arce, Brian M. Sadler\",\"doi\":\"10.5281/ZENODO.42175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent work on dimensionality reduction using Cauchy random projections has emerged for applications where ℓ<sub>1</sub> distance preservation is preferred. An original sparse signal b ϵ ℝ<sup>n</sup> is multiplied by a Cauchy random matrix <b>R</b> ϵ ℝ<sup>n×k</sup> (k≪n), resulting in a projected vector c ϵ ℝ<sup>k</sup>. Two approaches for fast recover of b from the Cauchy vector c are proposed. The two algorithms are based on a regularized coordinate-descent Myriad regression using both ℓ<sub>0</sub> and convex relaxation as sparsity inducing terms. The key element is to start, in the first iteration, by finding the optimal estimate value for each coordinate, and selectively updating only the coordinates with rapid descent in subsequent iterations. For the particular case of the ℓ<sub>0</sub> regularized approach, an approximation function for the ℓ<sub>0</sub>-norm is given due to it is non-differentiable norm [1]. Performance comparisons of the proposed approaches to the original regularized coordinate-descent method are included.\",\"PeriodicalId\":409817,\"journal\":{\"name\":\"2010 18th European Signal Processing Conference\",\"volume\":\"8 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 18th European Signal Processing Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.42175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 18th European Signal Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.42175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

最近关于使用柯西随机投影降维的研究已经出现,用于更倾向于保持1距离的应用。原始稀疏信号b λ∈n乘以柯西随机矩阵R λ∈n×k (k≪n),得到投影向量c λ∈k。提出了从柯西向量c中快速恢复b的两种方法。这两种算法都是基于正则化的坐标下降Myriad回归,同时使用l0和凸松弛作为稀疏性诱导项。关键元素是在第一次迭代中,通过找到每个坐标的最优估计值,并在随后的迭代中有选择地仅更新快速下降的坐标。对于特殊情况下的正则化方法,由于它是不可微的范数,给出了一个近似函数[1]。将所提方法与原始正则化坐标下降法的性能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast algorithms for reconstruction of sparse signals from cauchy random projections
Recent work on dimensionality reduction using Cauchy random projections has emerged for applications where ℓ1 distance preservation is preferred. An original sparse signal b ϵ ℝn is multiplied by a Cauchy random matrix R ϵ ℝn×k (k≪n), resulting in a projected vector c ϵ ℝk. Two approaches for fast recover of b from the Cauchy vector c are proposed. The two algorithms are based on a regularized coordinate-descent Myriad regression using both ℓ0 and convex relaxation as sparsity inducing terms. The key element is to start, in the first iteration, by finding the optimal estimate value for each coordinate, and selectively updating only the coordinates with rapid descent in subsequent iterations. For the particular case of the ℓ0 regularized approach, an approximation function for the ℓ0-norm is given due to it is non-differentiable norm [1]. Performance comparisons of the proposed approaches to the original regularized coordinate-descent method are included.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信