关于𝑆𝐿2的Lusztig渐近Hecke代数

Stefan Dawydiak
{"title":"关于𝑆𝐿2的Lusztig渐近Hecke代数","authors":"Stefan Dawydiak","doi":"10.1090/proc/15259","DOIUrl":null,"url":null,"abstract":"Let $H$ be the Iwahori-Hecke algebra and let $J$ be Lusztig's asymptotic Hecke algebra, both specialized to type $\\tilde{A}_1$. For $\\mathrm{SL}_2$, when the parameter $q$ is specialized to a prime power, Braverman and Kazhdan showed recently that a completion of $H$ has codimension two as a subalgebra of a completion of $J$, and described a basis for the quotient in spectral terms. In this note we write these functions explicitly in terms of the basis $\\{t_w\\}$ of $J$, and further invert the canonical isomorphism between the completions of $H$ and $J$, obtaining explicit formulas for the each basis element $t_w$ in terms of the basis $T_w$ of $H$. We conjecture some properties of this expansion for more general groups. We conclude by using our formulas to prove that $J$ acts on the Schwartz space of the basic affine space of $\\mathrm{SL}_2$, and produce some formulas for this action.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Lusztig’s asymptotic Hecke algebra for 𝑆𝐿₂\",\"authors\":\"Stefan Dawydiak\",\"doi\":\"10.1090/proc/15259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $H$ be the Iwahori-Hecke algebra and let $J$ be Lusztig's asymptotic Hecke algebra, both specialized to type $\\\\tilde{A}_1$. For $\\\\mathrm{SL}_2$, when the parameter $q$ is specialized to a prime power, Braverman and Kazhdan showed recently that a completion of $H$ has codimension two as a subalgebra of a completion of $J$, and described a basis for the quotient in spectral terms. In this note we write these functions explicitly in terms of the basis $\\\\{t_w\\\\}$ of $J$, and further invert the canonical isomorphism between the completions of $H$ and $J$, obtaining explicit formulas for the each basis element $t_w$ in terms of the basis $T_w$ of $H$. We conjecture some properties of this expansion for more general groups. We conclude by using our formulas to prove that $J$ acts on the Schwartz space of the basic affine space of $\\\\mathrm{SL}_2$, and produce some formulas for this action.\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/15259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/proc/15259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设$H$为iwahorii -Hecke代数,$J$为Lusztig的渐近Hecke代数,它们都专门化为类型$\tilde{A}_1$。对于$\ maththrm {SL}_2$,当参数$q$专化为质数幂时,Braverman和Kazhdan最近证明了$H$的补全作为$J$补全的子代数具有余维2,并在谱项中描述了商的一种基。在本文中,我们用$J$的基$\{t_w\}$显式地表示了这些函数,并进一步反演了$H$和$J$的补全之间的正则同构,得到了每个基元素$t_w$关于$H$的基$t_w$的显式公式。对于更一般的群,我们推测了这个展开式的一些性质。我们用公式证明了$J$作用于$\ mathm {SL}_2$的基本仿射空间的Schwartz空间,并给出了这个作用的一些公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Lusztig’s asymptotic Hecke algebra for 𝑆𝐿₂
Let $H$ be the Iwahori-Hecke algebra and let $J$ be Lusztig's asymptotic Hecke algebra, both specialized to type $\tilde{A}_1$. For $\mathrm{SL}_2$, when the parameter $q$ is specialized to a prime power, Braverman and Kazhdan showed recently that a completion of $H$ has codimension two as a subalgebra of a completion of $J$, and described a basis for the quotient in spectral terms. In this note we write these functions explicitly in terms of the basis $\{t_w\}$ of $J$, and further invert the canonical isomorphism between the completions of $H$ and $J$, obtaining explicit formulas for the each basis element $t_w$ in terms of the basis $T_w$ of $H$. We conjecture some properties of this expansion for more general groups. We conclude by using our formulas to prove that $J$ acts on the Schwartz space of the basic affine space of $\mathrm{SL}_2$, and produce some formulas for this action.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信