D. Maddi, A. Sheta, Dharani Davineni, Heba Al-Hiary
{"title":"基于进化算法和群体智能的PID控制器增益优化","authors":"D. Maddi, A. Sheta, Dharani Davineni, Heba Al-Hiary","doi":"10.1109/IACS.2019.8809144","DOIUrl":null,"url":null,"abstract":"Design of the Proportional-Integral-Derivative (PID) controller for an industrial process represents a challenge due to process complexity and non-linearity. Traditional methods such as Ziegler-Nichols (ZN) for PID controller tuning do not provide an optimal gain; thus, might leave the system with potential instability condition and cause significant losses and damages to the system. This paper investigates the merits of evolutionary and swarm-based optimization algorithms in fine-tuning the parameters of a PID controller. Here, Genetic Algorithms (GAs) and Particle Swarm Optimization (PSO) algorithm were utilized to optimize the PID controller for a DC motor system. Various fitness functions were provided for the presented algorithms to compute the performance of the controller. A new fitness function was proposed to achieve an outstanding control response for the DC motor system. Results demonstrate the efficacy of the proposed methods in improving closed loop system response.","PeriodicalId":225697,"journal":{"name":"2019 10th International Conference on Information and Communication Systems (ICICS)","volume":"2017 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Optimization of PID Controller Gain Using Evolutionary Algorithm and Swarm Intelligence\",\"authors\":\"D. Maddi, A. Sheta, Dharani Davineni, Heba Al-Hiary\",\"doi\":\"10.1109/IACS.2019.8809144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Design of the Proportional-Integral-Derivative (PID) controller for an industrial process represents a challenge due to process complexity and non-linearity. Traditional methods such as Ziegler-Nichols (ZN) for PID controller tuning do not provide an optimal gain; thus, might leave the system with potential instability condition and cause significant losses and damages to the system. This paper investigates the merits of evolutionary and swarm-based optimization algorithms in fine-tuning the parameters of a PID controller. Here, Genetic Algorithms (GAs) and Particle Swarm Optimization (PSO) algorithm were utilized to optimize the PID controller for a DC motor system. Various fitness functions were provided for the presented algorithms to compute the performance of the controller. A new fitness function was proposed to achieve an outstanding control response for the DC motor system. Results demonstrate the efficacy of the proposed methods in improving closed loop system response.\",\"PeriodicalId\":225697,\"journal\":{\"name\":\"2019 10th International Conference on Information and Communication Systems (ICICS)\",\"volume\":\"2017 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 10th International Conference on Information and Communication Systems (ICICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IACS.2019.8809144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 10th International Conference on Information and Communication Systems (ICICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IACS.2019.8809144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization of PID Controller Gain Using Evolutionary Algorithm and Swarm Intelligence
Design of the Proportional-Integral-Derivative (PID) controller for an industrial process represents a challenge due to process complexity and non-linearity. Traditional methods such as Ziegler-Nichols (ZN) for PID controller tuning do not provide an optimal gain; thus, might leave the system with potential instability condition and cause significant losses and damages to the system. This paper investigates the merits of evolutionary and swarm-based optimization algorithms in fine-tuning the parameters of a PID controller. Here, Genetic Algorithms (GAs) and Particle Swarm Optimization (PSO) algorithm were utilized to optimize the PID controller for a DC motor system. Various fitness functions were provided for the presented algorithms to compute the performance of the controller. A new fitness function was proposed to achieve an outstanding control response for the DC motor system. Results demonstrate the efficacy of the proposed methods in improving closed loop system response.