Curracurrong云:云中的流处理

Vasvi Kakkad, Akon Dey, A. Fekete, Bernhard Scholz
{"title":"Curracurrong云:云中的流处理","authors":"Vasvi Kakkad, Akon Dey, A. Fekete, Bernhard Scholz","doi":"10.1109/ICDEW.2014.6818328","DOIUrl":null,"url":null,"abstract":"The dominant model for computing with large-scale data in cloud environments has been founded on batch processing including the Map-Reduce model. Important use-cases such as monitoring and alerting in the cloud require instead the incremental and continual handling of new data. Thus recent systems such as Storm, Samza and S4 have adopted ideas from stream processing to the cloud environment. We describe a novel system, Curracurrong Cloud, that, for the first time, allows the computation and data origins to share a cloud-hosted cluster, offers a lightweight algebraic-style description of the processing pipeline, and supports automated placement of computation among compute resources.","PeriodicalId":302600,"journal":{"name":"2014 IEEE 30th International Conference on Data Engineering Workshops","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Curracurrong cloud: Stream processing in the cloud\",\"authors\":\"Vasvi Kakkad, Akon Dey, A. Fekete, Bernhard Scholz\",\"doi\":\"10.1109/ICDEW.2014.6818328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dominant model for computing with large-scale data in cloud environments has been founded on batch processing including the Map-Reduce model. Important use-cases such as monitoring and alerting in the cloud require instead the incremental and continual handling of new data. Thus recent systems such as Storm, Samza and S4 have adopted ideas from stream processing to the cloud environment. We describe a novel system, Curracurrong Cloud, that, for the first time, allows the computation and data origins to share a cloud-hosted cluster, offers a lightweight algebraic-style description of the processing pipeline, and supports automated placement of computation among compute resources.\",\"PeriodicalId\":302600,\"journal\":{\"name\":\"2014 IEEE 30th International Conference on Data Engineering Workshops\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 30th International Conference on Data Engineering Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDEW.2014.6818328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 30th International Conference on Data Engineering Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDEW.2014.6818328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

云环境中大规模数据计算的主流模型已经建立在批处理的基础上,包括Map-Reduce模型。重要的用例,如云中监控和警报,需要增量和持续地处理新数据。因此,最近的系统如Storm、Samza和S4都采用了从流处理到云环境的想法。我们描述了一个新颖的系统,Curracurrong Cloud,它首次允许计算和数据源共享云托管的集群,提供了处理管道的轻量级代数风格描述,并支持在计算资源之间自动放置计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Curracurrong cloud: Stream processing in the cloud
The dominant model for computing with large-scale data in cloud environments has been founded on batch processing including the Map-Reduce model. Important use-cases such as monitoring and alerting in the cloud require instead the incremental and continual handling of new data. Thus recent systems such as Storm, Samza and S4 have adopted ideas from stream processing to the cloud environment. We describe a novel system, Curracurrong Cloud, that, for the first time, allows the computation and data origins to share a cloud-hosted cluster, offers a lightweight algebraic-style description of the processing pipeline, and supports automated placement of computation among compute resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信