WSN稳定性和可扩展性增强研究

M. R. Pillai, R. B. Jain
{"title":"WSN稳定性和可扩展性增强研究","authors":"M. R. Pillai, R. B. Jain","doi":"10.1109/ICNTE44896.2019.8946115","DOIUrl":null,"url":null,"abstract":"Real-time applications integrated with WSN can be utilized in a hazardous area for long or short term, large or small scale, data monitoring or data collection. In such applications, stable network is required which will provide continuous services and less maintenance. So a higher stable clustering algorithm called Stability and Scalability Enhancement algorithm (SASE) is introduced. In SASE, probability and density conditions are used for clustering. In order to analyze the efficiency of the SASE algorithm, it is compared with the existing algorithms and the results show that SASE achieves 24% of higher stability compared to Mean Random PSO and 50% higher stable from other routing algorithms.","PeriodicalId":292408,"journal":{"name":"2019 International Conference on Nascent Technologies in Engineering (ICNTE)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Stability and Scalability Enhancement in WSN\",\"authors\":\"M. R. Pillai, R. B. Jain\",\"doi\":\"10.1109/ICNTE44896.2019.8946115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-time applications integrated with WSN can be utilized in a hazardous area for long or short term, large or small scale, data monitoring or data collection. In such applications, stable network is required which will provide continuous services and less maintenance. So a higher stable clustering algorithm called Stability and Scalability Enhancement algorithm (SASE) is introduced. In SASE, probability and density conditions are used for clustering. In order to analyze the efficiency of the SASE algorithm, it is compared with the existing algorithms and the results show that SASE achieves 24% of higher stability compared to Mean Random PSO and 50% higher stable from other routing algorithms.\",\"PeriodicalId\":292408,\"journal\":{\"name\":\"2019 International Conference on Nascent Technologies in Engineering (ICNTE)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Nascent Technologies in Engineering (ICNTE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNTE44896.2019.8946115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Nascent Technologies in Engineering (ICNTE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNTE44896.2019.8946115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与无线传感器网络集成的实时应用可以长期或短期、大规模或小规模地用于危险区域,进行数据监控或数据收集。在这些应用中,需要稳定的网络,以提供连续的服务和较少的维护。为此,提出了一种稳定性更高的聚类算法——稳定性和可扩展性增强算法(SASE)。在SASE中,概率和密度条件用于聚类。为了分析SASE算法的效率,将其与现有的路由算法进行了比较,结果表明,SASE算法比Mean Random PSO算法的稳定性提高了24%,比其他路由算法的稳定性提高了50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Stability and Scalability Enhancement in WSN
Real-time applications integrated with WSN can be utilized in a hazardous area for long or short term, large or small scale, data monitoring or data collection. In such applications, stable network is required which will provide continuous services and less maintenance. So a higher stable clustering algorithm called Stability and Scalability Enhancement algorithm (SASE) is introduced. In SASE, probability and density conditions are used for clustering. In order to analyze the efficiency of the SASE algorithm, it is compared with the existing algorithms and the results show that SASE achieves 24% of higher stability compared to Mean Random PSO and 50% higher stable from other routing algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信