尖锐的开尔文波:有尖头和局部衰减的弹性变形

F. D. Goes, Doug L. James
{"title":"尖锐的开尔文波:有尖头和局部衰减的弹性变形","authors":"F. D. Goes, Doug L. James","doi":"10.1145/3329715.3338884","DOIUrl":null,"url":null,"abstract":"In this work, we present an extension of the regularized Kelvinlet technique suited to non-smooth, cusp-like edits. Our approach is based on a novel multi-scale convolution scheme that layers Kelvinlet deformations into a finite but spiky solution, thus offering physically based volume sculpting with sharp falloff profiles. We also show that the Laplacian operator provides a simple and effective way to achieve elastic displacements with fast far-field decay, thereby avoiding the need for multi-scale extrapolation. Finally, we combine the multi-scale convolution and Laplacian machinery to produce Sharp Kelvinlets, a new family of analytic fundamental solutions of linear elasticity with control over both the locality and the spikiness of the brush profile. Closed-form expressions and reference implementation are also provided.","PeriodicalId":365444,"journal":{"name":"Proceedings of the 2019 Digital Production Symposium","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Sharp kelvinlets: elastic deformations with cusps and localized falloffs\",\"authors\":\"F. D. Goes, Doug L. James\",\"doi\":\"10.1145/3329715.3338884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present an extension of the regularized Kelvinlet technique suited to non-smooth, cusp-like edits. Our approach is based on a novel multi-scale convolution scheme that layers Kelvinlet deformations into a finite but spiky solution, thus offering physically based volume sculpting with sharp falloff profiles. We also show that the Laplacian operator provides a simple and effective way to achieve elastic displacements with fast far-field decay, thereby avoiding the need for multi-scale extrapolation. Finally, we combine the multi-scale convolution and Laplacian machinery to produce Sharp Kelvinlets, a new family of analytic fundamental solutions of linear elasticity with control over both the locality and the spikiness of the brush profile. Closed-form expressions and reference implementation are also provided.\",\"PeriodicalId\":365444,\"journal\":{\"name\":\"Proceedings of the 2019 Digital Production Symposium\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 Digital Production Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3329715.3338884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 Digital Production Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3329715.3338884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在这项工作中,我们提出了正则化开尔文莱特技术适用于非光滑,尖状编辑的扩展。我们的方法基于一种新颖的多尺度卷积方案,该方案将Kelvinlet变形分层为有限但尖锐的解决方案,从而提供具有尖锐衰减轮廓的基于物理的体积雕刻。我们还证明了拉普拉斯算子提供了一种简单有效的方法来实现具有快速远场衰减的弹性位移,从而避免了对多尺度外推的需要。最后,我们将多尺度卷积和拉普拉斯机制结合起来,产生了Sharp kelvinlet,这是一种新的线性弹性解析基本解,可以控制刷子轮廓的局域性和尖刺性。还提供了封闭形式的表达式和引用实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sharp kelvinlets: elastic deformations with cusps and localized falloffs
In this work, we present an extension of the regularized Kelvinlet technique suited to non-smooth, cusp-like edits. Our approach is based on a novel multi-scale convolution scheme that layers Kelvinlet deformations into a finite but spiky solution, thus offering physically based volume sculpting with sharp falloff profiles. We also show that the Laplacian operator provides a simple and effective way to achieve elastic displacements with fast far-field decay, thereby avoiding the need for multi-scale extrapolation. Finally, we combine the multi-scale convolution and Laplacian machinery to produce Sharp Kelvinlets, a new family of analytic fundamental solutions of linear elasticity with control over both the locality and the spikiness of the brush profile. Closed-form expressions and reference implementation are also provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信