基于NMF的数据聚类与分类新方法

Jie Tang, Xinyu Ceng, Bo Peng
{"title":"基于NMF的数据聚类与分类新方法","authors":"Jie Tang, Xinyu Ceng, Bo Peng","doi":"10.1109/BCGIN.2011.114","DOIUrl":null,"url":null,"abstract":"Nonnegative matrix factorization method is a kind of new matrix decomposition method. It is an effective tool for large data processing and analysis. At the same time, NMF has an important performance on intelligent information processing and pattern recognition. This paper first analyses and discusses the NMF algorithms based on its basic theory. We then propose new methods of data clustering and classification based on NMF separately. NMF method is applied to reduce the dimension of the original matrix. We run clustering algorithms on the encoded matrix after NMF processing instead of on the original matrix. Running clustering algorithms on smaller encoded matrix can save more time and storage space. After that, we bring in a series of improvement methods of classification on the basis of clustering. Finally we have done experiments to test and verify them, and gotten good results.","PeriodicalId":127523,"journal":{"name":"2011 International Conference on Business Computing and Global Informatization","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"New Methods of Data Clustering and Classification Based on NMF\",\"authors\":\"Jie Tang, Xinyu Ceng, Bo Peng\",\"doi\":\"10.1109/BCGIN.2011.114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonnegative matrix factorization method is a kind of new matrix decomposition method. It is an effective tool for large data processing and analysis. At the same time, NMF has an important performance on intelligent information processing and pattern recognition. This paper first analyses and discusses the NMF algorithms based on its basic theory. We then propose new methods of data clustering and classification based on NMF separately. NMF method is applied to reduce the dimension of the original matrix. We run clustering algorithms on the encoded matrix after NMF processing instead of on the original matrix. Running clustering algorithms on smaller encoded matrix can save more time and storage space. After that, we bring in a series of improvement methods of classification on the basis of clustering. Finally we have done experiments to test and verify them, and gotten good results.\",\"PeriodicalId\":127523,\"journal\":{\"name\":\"2011 International Conference on Business Computing and Global Informatization\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Business Computing and Global Informatization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BCGIN.2011.114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Business Computing and Global Informatization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BCGIN.2011.114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

非负矩阵分解法是一种新的矩阵分解方法。它是处理和分析大数据的有效工具。同时,NMF在智能信息处理和模式识别方面也有着重要的作用。本文首先从NMF算法的基本理论出发,对其进行了分析和讨论。然后,我们分别提出了基于NMF的数据聚类和分类的新方法。采用NMF法对原始矩阵进行降维。我们在经过NMF处理后的编码矩阵上运行聚类算法,而不是在原始矩阵上运行。在较小的编码矩阵上运行聚类算法可以节省更多的时间和存储空间。在此基础上,提出了一系列基于聚类的分类改进方法。最后进行了实验验证,取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Methods of Data Clustering and Classification Based on NMF
Nonnegative matrix factorization method is a kind of new matrix decomposition method. It is an effective tool for large data processing and analysis. At the same time, NMF has an important performance on intelligent information processing and pattern recognition. This paper first analyses and discusses the NMF algorithms based on its basic theory. We then propose new methods of data clustering and classification based on NMF separately. NMF method is applied to reduce the dimension of the original matrix. We run clustering algorithms on the encoded matrix after NMF processing instead of on the original matrix. Running clustering algorithms on smaller encoded matrix can save more time and storage space. After that, we bring in a series of improvement methods of classification on the basis of clustering. Finally we have done experiments to test and verify them, and gotten good results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信