多边形域测地线直径的最大畸变

A. Dumitrescu, Csaba D. T'oth
{"title":"多边形域测地线直径的最大畸变","authors":"A. Dumitrescu, Csaba D. T'oth","doi":"10.48550/arXiv.2304.03484","DOIUrl":null,"url":null,"abstract":"For a polygon $P$ with holes in the plane, we denote by $\\varrho(P)$ the ratio between the geodesic and the Euclidean diameters of $P$. It is shown that over all convex polygons with $h$~convex holes, the supremum of $\\varrho(P)$ is between $\\Omega(h^{1/3})$ and $O(h^{1/2})$. The upper bound improves to $O(1+\\min\\{h^{3/4}\\Delta,h^{1/2}\\Delta^{1/2}\\})$ if every hole has diameter at most $\\Delta\\cdot {\\rm diam}_2(P)$; and to $O(1)$ if every hole is a \\emph{fat} convex polygon. Furthermore, we show that the function $g(h)=\\sup_P \\varrho(P)$ over convex polygons with $h$ convex holes has the same growth rate as an analogous quantity over geometric triangulations with $h$ vertices when $h\\rightarrow \\infty$.","PeriodicalId":403593,"journal":{"name":"International Workshop on Combinatorial Algorithms","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximal Distortion of Geodesic Diameters in Polygonal Domains\",\"authors\":\"A. Dumitrescu, Csaba D. T'oth\",\"doi\":\"10.48550/arXiv.2304.03484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a polygon $P$ with holes in the plane, we denote by $\\\\varrho(P)$ the ratio between the geodesic and the Euclidean diameters of $P$. It is shown that over all convex polygons with $h$~convex holes, the supremum of $\\\\varrho(P)$ is between $\\\\Omega(h^{1/3})$ and $O(h^{1/2})$. The upper bound improves to $O(1+\\\\min\\\\{h^{3/4}\\\\Delta,h^{1/2}\\\\Delta^{1/2}\\\\})$ if every hole has diameter at most $\\\\Delta\\\\cdot {\\\\rm diam}_2(P)$; and to $O(1)$ if every hole is a \\\\emph{fat} convex polygon. Furthermore, we show that the function $g(h)=\\\\sup_P \\\\varrho(P)$ over convex polygons with $h$ convex holes has the same growth rate as an analogous quantity over geometric triangulations with $h$ vertices when $h\\\\rightarrow \\\\infty$.\",\"PeriodicalId\":403593,\"journal\":{\"name\":\"International Workshop on Combinatorial Algorithms\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Combinatorial Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2304.03484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Combinatorial Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2304.03484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于平面上有孔的多边形$P$,我们用$\varrho(P)$表示$P$的测地线直径与欧几里得直径之间的比值。结果表明,在所有具有$h$凸孔的凸多边形上,$\varrho(P)$的极值在$\Omega(h^{1/3})$和$O(h^{1/2})$之间。如果每个孔的直径不超过$\Delta\cdot {\rm diam}_2(P)$,上限提高到$O(1+\min\{h^{3/4}\Delta,h^{1/2}\Delta^{1/2}\})$;如果每个孔都是一个\emph{胖}凸多边形,就会得到$O(1)$。此外,我们表明,当$h\rightarrow \infty$时,具有$h$凸孔的凸多边形上的函数$g(h)=\sup_P \varrho(P)$与具有$h$顶点的几何三角形上的类似量具有相同的增长率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximal Distortion of Geodesic Diameters in Polygonal Domains
For a polygon $P$ with holes in the plane, we denote by $\varrho(P)$ the ratio between the geodesic and the Euclidean diameters of $P$. It is shown that over all convex polygons with $h$~convex holes, the supremum of $\varrho(P)$ is between $\Omega(h^{1/3})$ and $O(h^{1/2})$. The upper bound improves to $O(1+\min\{h^{3/4}\Delta,h^{1/2}\Delta^{1/2}\})$ if every hole has diameter at most $\Delta\cdot {\rm diam}_2(P)$; and to $O(1)$ if every hole is a \emph{fat} convex polygon. Furthermore, we show that the function $g(h)=\sup_P \varrho(P)$ over convex polygons with $h$ convex holes has the same growth rate as an analogous quantity over geometric triangulations with $h$ vertices when $h\rightarrow \infty$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信