{"title":"利用滚动和MAX-SAT求解带定时窗的有容车辆路径问题","authors":"H. Khadilkar","doi":"10.1109/ICC56513.2022.10093678","DOIUrl":null,"url":null,"abstract":"The vehicle routing problem is a well known class of NP-hard combinatorial optimisation problems in literature. Traditional solution methods involve either carefully designed heuristics, or time-consuming metaheuristics. Recent work in reinforcement learning has been a promising alternative approach, but has found it difficult to compete with traditional methods in terms of solution quality. This paper proposes a hybrid approach that combines reinforcement learning, policy rollouts, and a satisfiability solver to enable a tunable tradeoff between computation times and solution quality. Results on a popular public data set show that the algorithm is able to produce solutions closer to optimal levels than existing learning based approaches, and with shorter computation times than meta-heuristics. The approach requires minimal design effort and is able to solve unseen problems of arbitrary scale without additional training. Furthermore, the methodology is generalisable to other combinatorial optimisation problems.","PeriodicalId":101654,"journal":{"name":"2022 Eighth Indian Control Conference (ICC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Solving the capacitated vehicle routing problem with timing windows using rollouts and MAX-SAT\",\"authors\":\"H. Khadilkar\",\"doi\":\"10.1109/ICC56513.2022.10093678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The vehicle routing problem is a well known class of NP-hard combinatorial optimisation problems in literature. Traditional solution methods involve either carefully designed heuristics, or time-consuming metaheuristics. Recent work in reinforcement learning has been a promising alternative approach, but has found it difficult to compete with traditional methods in terms of solution quality. This paper proposes a hybrid approach that combines reinforcement learning, policy rollouts, and a satisfiability solver to enable a tunable tradeoff between computation times and solution quality. Results on a popular public data set show that the algorithm is able to produce solutions closer to optimal levels than existing learning based approaches, and with shorter computation times than meta-heuristics. The approach requires minimal design effort and is able to solve unseen problems of arbitrary scale without additional training. Furthermore, the methodology is generalisable to other combinatorial optimisation problems.\",\"PeriodicalId\":101654,\"journal\":{\"name\":\"2022 Eighth Indian Control Conference (ICC)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Eighth Indian Control Conference (ICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICC56513.2022.10093678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Eighth Indian Control Conference (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC56513.2022.10093678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Solving the capacitated vehicle routing problem with timing windows using rollouts and MAX-SAT
The vehicle routing problem is a well known class of NP-hard combinatorial optimisation problems in literature. Traditional solution methods involve either carefully designed heuristics, or time-consuming metaheuristics. Recent work in reinforcement learning has been a promising alternative approach, but has found it difficult to compete with traditional methods in terms of solution quality. This paper proposes a hybrid approach that combines reinforcement learning, policy rollouts, and a satisfiability solver to enable a tunable tradeoff between computation times and solution quality. Results on a popular public data set show that the algorithm is able to produce solutions closer to optimal levels than existing learning based approaches, and with shorter computation times than meta-heuristics. The approach requires minimal design effort and is able to solve unseen problems of arbitrary scale without additional training. Furthermore, the methodology is generalisable to other combinatorial optimisation problems.