Zhihe Lu, Tanhao Hu, Lingxiao Song, Zhaoxiang Zhang, R. He
{"title":"基于人脸解析变换的条件表达式合成","authors":"Zhihe Lu, Tanhao Hu, Lingxiao Song, Zhaoxiang Zhang, R. He","doi":"10.1145/3240508.3240647","DOIUrl":null,"url":null,"abstract":"Facial expression synthesis with various intensities is a challenging synthesis task due to large identity appearance variations and a paucity of efficient means for intensity measurement. This paper advances the expression synthesis domain by the introduction of a Couple-Agent Face Parsing based Generative Adversarial Network (CAFP-GAN) that unites the knowledge of facial semantic regions and controllable expression signals. Specially, we employ a face parsing map as a controllable condition to guide facial texture generation with a special expression, which can provide a semantic representation of every pixel of facial regions. Our method consists of two sub-networks: face parsing prediction network (FPPN) uses controllable labels (expression and intensity) to generate a face parsing map transformation that corresponds to the labels from the input neutral face, and facial expression synthesis network (FESN) makes the pretrained FPPN as a part of it to provide the face parsing map as a guidance for expression synthesis. To enhance the reality of results, couple-agent discriminators are served to distinguish fake-real pairs in both two sub-nets. Moreover, we only need the neutral face and the labels to synthesize the unknown expression with different intensities. Experimental results on three popular facial expression databases show that our method has the compelling ability on continuous expression synthesis.","PeriodicalId":339857,"journal":{"name":"Proceedings of the 26th ACM international conference on Multimedia","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Conditional Expression Synthesis with Face Parsing Transformation\",\"authors\":\"Zhihe Lu, Tanhao Hu, Lingxiao Song, Zhaoxiang Zhang, R. He\",\"doi\":\"10.1145/3240508.3240647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facial expression synthesis with various intensities is a challenging synthesis task due to large identity appearance variations and a paucity of efficient means for intensity measurement. This paper advances the expression synthesis domain by the introduction of a Couple-Agent Face Parsing based Generative Adversarial Network (CAFP-GAN) that unites the knowledge of facial semantic regions and controllable expression signals. Specially, we employ a face parsing map as a controllable condition to guide facial texture generation with a special expression, which can provide a semantic representation of every pixel of facial regions. Our method consists of two sub-networks: face parsing prediction network (FPPN) uses controllable labels (expression and intensity) to generate a face parsing map transformation that corresponds to the labels from the input neutral face, and facial expression synthesis network (FESN) makes the pretrained FPPN as a part of it to provide the face parsing map as a guidance for expression synthesis. To enhance the reality of results, couple-agent discriminators are served to distinguish fake-real pairs in both two sub-nets. Moreover, we only need the neutral face and the labels to synthesize the unknown expression with different intensities. Experimental results on three popular facial expression databases show that our method has the compelling ability on continuous expression synthesis.\",\"PeriodicalId\":339857,\"journal\":{\"name\":\"Proceedings of the 26th ACM international conference on Multimedia\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 26th ACM international conference on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3240508.3240647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240508.3240647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Conditional Expression Synthesis with Face Parsing Transformation
Facial expression synthesis with various intensities is a challenging synthesis task due to large identity appearance variations and a paucity of efficient means for intensity measurement. This paper advances the expression synthesis domain by the introduction of a Couple-Agent Face Parsing based Generative Adversarial Network (CAFP-GAN) that unites the knowledge of facial semantic regions and controllable expression signals. Specially, we employ a face parsing map as a controllable condition to guide facial texture generation with a special expression, which can provide a semantic representation of every pixel of facial regions. Our method consists of two sub-networks: face parsing prediction network (FPPN) uses controllable labels (expression and intensity) to generate a face parsing map transformation that corresponds to the labels from the input neutral face, and facial expression synthesis network (FESN) makes the pretrained FPPN as a part of it to provide the face parsing map as a guidance for expression synthesis. To enhance the reality of results, couple-agent discriminators are served to distinguish fake-real pairs in both two sub-nets. Moreover, we only need the neutral face and the labels to synthesize the unknown expression with different intensities. Experimental results on three popular facial expression databases show that our method has the compelling ability on continuous expression synthesis.