从手机上的自然特征进行姿势跟踪

Daniel Wagner, Gerhard Reitmayr, Alessandro Mulloni, T. Drummond, D. Schmalstieg
{"title":"从手机上的自然特征进行姿势跟踪","authors":"Daniel Wagner, Gerhard Reitmayr, Alessandro Mulloni, T. Drummond, D. Schmalstieg","doi":"10.1109/ISMAR.2008.4637338","DOIUrl":null,"url":null,"abstract":"In this paper we present two techniques for natural feature tracking in real-time on mobile phones. We achieve interactive frame rates of up to 20 Hz for natural feature tracking from textured planar targets on current-generation phones. We use an approach based on heavily modified state-of-the-art feature descriptors, namely SIFT and Ferns. While SIFT is known to be a strong, but computationally expensive feature descriptor, Ferns classification is fast, but requires large amounts of memory. This renders both original designs unsuitable for mobile phones. We give detailed descriptions on how we modified both approaches to make them suitable for mobile phones. We present evaluations on robustness and performance on various devices and finally discuss their appropriateness for augmented reality applications.","PeriodicalId":168134,"journal":{"name":"2008 7th IEEE/ACM International Symposium on Mixed and Augmented Reality","volume":"24 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"524","resultStr":"{\"title\":\"Pose tracking from natural features on mobile phones\",\"authors\":\"Daniel Wagner, Gerhard Reitmayr, Alessandro Mulloni, T. Drummond, D. Schmalstieg\",\"doi\":\"10.1109/ISMAR.2008.4637338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present two techniques for natural feature tracking in real-time on mobile phones. We achieve interactive frame rates of up to 20 Hz for natural feature tracking from textured planar targets on current-generation phones. We use an approach based on heavily modified state-of-the-art feature descriptors, namely SIFT and Ferns. While SIFT is known to be a strong, but computationally expensive feature descriptor, Ferns classification is fast, but requires large amounts of memory. This renders both original designs unsuitable for mobile phones. We give detailed descriptions on how we modified both approaches to make them suitable for mobile phones. We present evaluations on robustness and performance on various devices and finally discuss their appropriateness for augmented reality applications.\",\"PeriodicalId\":168134,\"journal\":{\"name\":\"2008 7th IEEE/ACM International Symposium on Mixed and Augmented Reality\",\"volume\":\"24 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"524\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 7th IEEE/ACM International Symposium on Mixed and Augmented Reality\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMAR.2008.4637338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 7th IEEE/ACM International Symposium on Mixed and Augmented Reality","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMAR.2008.4637338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 524

摘要

本文提出了两种在手机上实时跟踪自然特征的技术。我们在当前一代手机上实现了高达20 Hz的交互帧率,用于纹理平面目标的自然特征跟踪。我们使用了一种基于大量修改的最先进的特征描述符的方法,即SIFT和蕨类植物。众所周知,SIFT是一种功能强大但计算代价昂贵的特征描述符,而Ferns的分类速度很快,但需要大量内存。这使得这两种原始设计都不适合手机。我们详细描述了我们如何修改这两种方法,使它们适用于移动电话。我们对各种设备的鲁棒性和性能进行了评估,最后讨论了它们对增强现实应用的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pose tracking from natural features on mobile phones
In this paper we present two techniques for natural feature tracking in real-time on mobile phones. We achieve interactive frame rates of up to 20 Hz for natural feature tracking from textured planar targets on current-generation phones. We use an approach based on heavily modified state-of-the-art feature descriptors, namely SIFT and Ferns. While SIFT is known to be a strong, but computationally expensive feature descriptor, Ferns classification is fast, but requires large amounts of memory. This renders both original designs unsuitable for mobile phones. We give detailed descriptions on how we modified both approaches to make them suitable for mobile phones. We present evaluations on robustness and performance on various devices and finally discuss their appropriateness for augmented reality applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信