闭孔聚氨酯和泡沫铝复合梁试验

George Mason, Ethan Salman, S. Mujahid
{"title":"闭孔聚氨酯和泡沫铝复合梁试验","authors":"George Mason, Ethan Salman, S. Mujahid","doi":"10.56884/vcix2361","DOIUrl":null,"url":null,"abstract":"The frames of many commercial vehicles are composed of rectangular tubular steel and are a significant portion of the gross vehicle weight. The introduction of a composite frame would potentially reduce weight and increase structural properties. We compare a baseline frame section to new composite sections injected with two different types of foam: a polyurethane and aluminum foam. The objective was to increase the overall strength and stiffness, while leaving the overall weight of the frame unchanged or reduced by reducing the plate thickness of the tubular steel. Sections of rectangular tubular steel are tested individually with and without the inclusion of aluminum and closed cell polyurethane foam. The potential advantages include light weighting vehicles, increasing strength and durability, improving ride through a more ridged/stiffer un-sprung mass, and the ability to make quick structural repairs of a compromised vehicle frame. The study revealed that injecting of polyurethane foam produced increase in strength while the aluminum foam did not increase the strength.","PeriodicalId":447600,"journal":{"name":"Proceedings of the 11th Asia-Pacific Regional Conference of the ISTVS","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Composite Beam Tests with Closed Cell Polyurethane and Aluminum Foam\",\"authors\":\"George Mason, Ethan Salman, S. Mujahid\",\"doi\":\"10.56884/vcix2361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The frames of many commercial vehicles are composed of rectangular tubular steel and are a significant portion of the gross vehicle weight. The introduction of a composite frame would potentially reduce weight and increase structural properties. We compare a baseline frame section to new composite sections injected with two different types of foam: a polyurethane and aluminum foam. The objective was to increase the overall strength and stiffness, while leaving the overall weight of the frame unchanged or reduced by reducing the plate thickness of the tubular steel. Sections of rectangular tubular steel are tested individually with and without the inclusion of aluminum and closed cell polyurethane foam. The potential advantages include light weighting vehicles, increasing strength and durability, improving ride through a more ridged/stiffer un-sprung mass, and the ability to make quick structural repairs of a compromised vehicle frame. The study revealed that injecting of polyurethane foam produced increase in strength while the aluminum foam did not increase the strength.\",\"PeriodicalId\":447600,\"journal\":{\"name\":\"Proceedings of the 11th Asia-Pacific Regional Conference of the ISTVS\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th Asia-Pacific Regional Conference of the ISTVS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56884/vcix2361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Asia-Pacific Regional Conference of the ISTVS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56884/vcix2361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多商用车的车架由矩形管状钢组成,占车辆总重量的很大一部分。复合材料框架的引入将潜在地减轻重量并提高结构性能。我们比较了一个基线框架部分,新的复合部分注入了两种不同类型的泡沫:聚氨酯和泡沫铝。目标是增加整体强度和刚度,同时保持框架的整体重量不变或通过减少管状钢的板厚来减少。矩形管型钢的截面分别测试了含铝和闭孔聚氨酯泡沫的和不含铝的。该技术的潜在优势包括:车辆重量轻,强度和耐久性提高,通过更硬的非簧载质量改善行驶,以及对受损车架进行快速结构修复的能力。研究表明,注入聚氨酯泡沫塑料可以提高泡沫塑料的强度,而注入铝泡沫塑料则不能提高泡沫塑料的强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Composite Beam Tests with Closed Cell Polyurethane and Aluminum Foam
The frames of many commercial vehicles are composed of rectangular tubular steel and are a significant portion of the gross vehicle weight. The introduction of a composite frame would potentially reduce weight and increase structural properties. We compare a baseline frame section to new composite sections injected with two different types of foam: a polyurethane and aluminum foam. The objective was to increase the overall strength and stiffness, while leaving the overall weight of the frame unchanged or reduced by reducing the plate thickness of the tubular steel. Sections of rectangular tubular steel are tested individually with and without the inclusion of aluminum and closed cell polyurethane foam. The potential advantages include light weighting vehicles, increasing strength and durability, improving ride through a more ridged/stiffer un-sprung mass, and the ability to make quick structural repairs of a compromised vehicle frame. The study revealed that injecting of polyurethane foam produced increase in strength while the aluminum foam did not increase the strength.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信