将图切割扩展到连续值域最小化

M. Felsberg
{"title":"将图切割扩展到连续值域最小化","authors":"M. Felsberg","doi":"10.1109/CRV.2007.29","DOIUrl":null,"url":null,"abstract":"In this paper we propose two methods for minimizing objective functions of discrete functions with continuous value domain. Many practical problems in the area of computer vision are continuous-valued, and discrete optimization methods of graph-cut type cannot be applied directly. This is different with the proposed methods. The first method is an add-on for multiple-label graph-cut. In the second one, binary graph-cut is firstly used to generate regions of support within different ranges of the signal. Secondly, a robust error minimization is approximated based on the previously determined regions. The advantages and properties of the new approaches are explained and visualized using synthetic test data. The methods are compared to ordinary multi-label graph-cut and robust smoothing for the application of disparity estimation. They show better quality of results compared to the other approaches and the second algorithm is significantly faster than multi-label graph-cut.","PeriodicalId":304254,"journal":{"name":"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)","volume":"43 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Extending Graph-Cut to Continuous Value Domain Minimization\",\"authors\":\"M. Felsberg\",\"doi\":\"10.1109/CRV.2007.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose two methods for minimizing objective functions of discrete functions with continuous value domain. Many practical problems in the area of computer vision are continuous-valued, and discrete optimization methods of graph-cut type cannot be applied directly. This is different with the proposed methods. The first method is an add-on for multiple-label graph-cut. In the second one, binary graph-cut is firstly used to generate regions of support within different ranges of the signal. Secondly, a robust error minimization is approximated based on the previously determined regions. The advantages and properties of the new approaches are explained and visualized using synthetic test data. The methods are compared to ordinary multi-label graph-cut and robust smoothing for the application of disparity estimation. They show better quality of results compared to the other approaches and the second algorithm is significantly faster than multi-label graph-cut.\",\"PeriodicalId\":304254,\"journal\":{\"name\":\"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)\",\"volume\":\"43 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRV.2007.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2007.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了具有连续值域的离散函数目标函数的两种最小化方法。计算机视觉领域的许多实际问题都是连续值问题,不能直接应用图切型的离散优化方法。这与提议的方法不同。第一种方法是用于多标签图切割的附加组件。在第二种方法中,首先使用二值图割在信号的不同范围内生成支持区域。其次,基于先前确定的区域进行鲁棒误差最小化近似。利用综合试验数据对新方法的优点和性能进行了说明和可视化。针对视差估计的应用,将该方法与普通的多标签图切割和鲁棒平滑进行了比较。与其他方法相比,它们显示出更好的结果质量,并且第二种算法明显比多标签图切割快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extending Graph-Cut to Continuous Value Domain Minimization
In this paper we propose two methods for minimizing objective functions of discrete functions with continuous value domain. Many practical problems in the area of computer vision are continuous-valued, and discrete optimization methods of graph-cut type cannot be applied directly. This is different with the proposed methods. The first method is an add-on for multiple-label graph-cut. In the second one, binary graph-cut is firstly used to generate regions of support within different ranges of the signal. Secondly, a robust error minimization is approximated based on the previously determined regions. The advantages and properties of the new approaches are explained and visualized using synthetic test data. The methods are compared to ordinary multi-label graph-cut and robust smoothing for the application of disparity estimation. They show better quality of results compared to the other approaches and the second algorithm is significantly faster than multi-label graph-cut.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信