基于主题模型的交通密度估计新方法

Razie Kaviani, P. Ahmadi, I. Gholampour
{"title":"基于主题模型的交通密度估计新方法","authors":"Razie Kaviani, P. Ahmadi, I. Gholampour","doi":"10.1109/SPIS.2015.7422323","DOIUrl":null,"url":null,"abstract":"Traffic density estimation plays an integral role in intelligent transportation systems (ITS), using which provides important information for signal control and effective traffic management. In this paper, we present a new framework for traffic density estimation based on topic model, which is an unsupervised model. This framework uses a set of visual features without any need to individual vehicle detection and tracking, and discovers the motion patterns automatically in traffic scenes by using topic model. Then, likelihood value allocated to each video clip enables us to estimate its traffic density. Results on a standard dataset show high classification performance of our proposed approach and robustness to typical environmental and illumination conditions.","PeriodicalId":424434,"journal":{"name":"2015 Signal Processing and Intelligent Systems Conference (SPIS)","volume":"15 15-16","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A new method for traffic density estimation based on topic model\",\"authors\":\"Razie Kaviani, P. Ahmadi, I. Gholampour\",\"doi\":\"10.1109/SPIS.2015.7422323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic density estimation plays an integral role in intelligent transportation systems (ITS), using which provides important information for signal control and effective traffic management. In this paper, we present a new framework for traffic density estimation based on topic model, which is an unsupervised model. This framework uses a set of visual features without any need to individual vehicle detection and tracking, and discovers the motion patterns automatically in traffic scenes by using topic model. Then, likelihood value allocated to each video clip enables us to estimate its traffic density. Results on a standard dataset show high classification performance of our proposed approach and robustness to typical environmental and illumination conditions.\",\"PeriodicalId\":424434,\"journal\":{\"name\":\"2015 Signal Processing and Intelligent Systems Conference (SPIS)\",\"volume\":\"15 15-16\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Signal Processing and Intelligent Systems Conference (SPIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPIS.2015.7422323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Signal Processing and Intelligent Systems Conference (SPIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPIS.2015.7422323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

交通密度估计在智能交通系统中起着重要的作用,为信号控制和有效的交通管理提供了重要的信息。本文提出了一种新的基于主题模型的交通密度估计框架,这是一种无监督模型。该框架利用一组视觉特征,无需对单个车辆进行检测和跟踪,利用主题模型自动发现交通场景中的运动模式。然后,为每个视频片段分配似然值,使我们能够估计其流量密度。在标准数据集上的结果表明,我们提出的方法具有较高的分类性能,并且对典型环境和光照条件具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new method for traffic density estimation based on topic model
Traffic density estimation plays an integral role in intelligent transportation systems (ITS), using which provides important information for signal control and effective traffic management. In this paper, we present a new framework for traffic density estimation based on topic model, which is an unsupervised model. This framework uses a set of visual features without any need to individual vehicle detection and tracking, and discovers the motion patterns automatically in traffic scenes by using topic model. Then, likelihood value allocated to each video clip enables us to estimate its traffic density. Results on a standard dataset show high classification performance of our proposed approach and robustness to typical environmental and illumination conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信