Jason Robinson, Vishakh H. Shewalkar, Isaiah Rigo, Asaiah Rock, Lucy Cinnamon, Daniella Chapman-Rienstra, Jooyoung Hong, Joohyung Kim, Holly M. Golecki
{"title":"设计一种用于轮椅使用者减压的定制传感和驱动垫","authors":"Jason Robinson, Vishakh H. Shewalkar, Isaiah Rigo, Asaiah Rock, Lucy Cinnamon, Daniella Chapman-Rienstra, Jooyoung Hong, Joohyung Kim, Holly M. Golecki","doi":"10.1115/dmd2023-6305","DOIUrl":null,"url":null,"abstract":"\n Pressure sores impact a wide range of individuals including wheelchair users. Solutions to address pressure sore prevention are limited. This work is aimed at developing devices to prevent pressure sores in wheelchair users with limited mobility or sensation. Informed by stakeholder input, we present a dynamic cushion design to sense areas of high pressure and actuate to relieve that pressure. We experimented using resistive sensors in a grid formation to map pressure across the seat. To relieve pressure, we propose a grid of custom pneumatic bladders to inflate in response to sensor thresholds. Bladders will inflate to redistribute pressure. After experimenting with a variety of possible bladder geometries, we selected torus-shaped actuators to optimize durability, stability, and increase breathability in the final design. Given the ability to fabricate custom bladders and program controls, the proposed device can be tailored to users’ specific needs. While static cushion solutions exist on the market, our custom design allows users to dynamically alleviate pressure eliminated the need to constantly readjust position and ultimately reduce time spent treating sores.","PeriodicalId":325836,"journal":{"name":"2023 Design of Medical Devices Conference","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DESIGN OF A CUSTOM SENSING AND ACTUATING CUSHION FOR USE IN PRESSURE RELIEF IN WHEELCHAIR USERS\",\"authors\":\"Jason Robinson, Vishakh H. Shewalkar, Isaiah Rigo, Asaiah Rock, Lucy Cinnamon, Daniella Chapman-Rienstra, Jooyoung Hong, Joohyung Kim, Holly M. Golecki\",\"doi\":\"10.1115/dmd2023-6305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Pressure sores impact a wide range of individuals including wheelchair users. Solutions to address pressure sore prevention are limited. This work is aimed at developing devices to prevent pressure sores in wheelchair users with limited mobility or sensation. Informed by stakeholder input, we present a dynamic cushion design to sense areas of high pressure and actuate to relieve that pressure. We experimented using resistive sensors in a grid formation to map pressure across the seat. To relieve pressure, we propose a grid of custom pneumatic bladders to inflate in response to sensor thresholds. Bladders will inflate to redistribute pressure. After experimenting with a variety of possible bladder geometries, we selected torus-shaped actuators to optimize durability, stability, and increase breathability in the final design. Given the ability to fabricate custom bladders and program controls, the proposed device can be tailored to users’ specific needs. While static cushion solutions exist on the market, our custom design allows users to dynamically alleviate pressure eliminated the need to constantly readjust position and ultimately reduce time spent treating sores.\",\"PeriodicalId\":325836,\"journal\":{\"name\":\"2023 Design of Medical Devices Conference\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 Design of Medical Devices Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/dmd2023-6305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Design of Medical Devices Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dmd2023-6305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DESIGN OF A CUSTOM SENSING AND ACTUATING CUSHION FOR USE IN PRESSURE RELIEF IN WHEELCHAIR USERS
Pressure sores impact a wide range of individuals including wheelchair users. Solutions to address pressure sore prevention are limited. This work is aimed at developing devices to prevent pressure sores in wheelchair users with limited mobility or sensation. Informed by stakeholder input, we present a dynamic cushion design to sense areas of high pressure and actuate to relieve that pressure. We experimented using resistive sensors in a grid formation to map pressure across the seat. To relieve pressure, we propose a grid of custom pneumatic bladders to inflate in response to sensor thresholds. Bladders will inflate to redistribute pressure. After experimenting with a variety of possible bladder geometries, we selected torus-shaped actuators to optimize durability, stability, and increase breathability in the final design. Given the ability to fabricate custom bladders and program controls, the proposed device can be tailored to users’ specific needs. While static cushion solutions exist on the market, our custom design allows users to dynamically alleviate pressure eliminated the need to constantly readjust position and ultimately reduce time spent treating sores.