铁路卫星信道上的TCP性能

M. Luglio, C. Roseti, G. Savone, F. Zampognaro
{"title":"铁路卫星信道上的TCP性能","authors":"M. Luglio, C. Roseti, G. Savone, F. Zampognaro","doi":"10.1109/IWSSC.2009.5286324","DOIUrl":null,"url":null,"abstract":"High-speed rail is emerging in the world as an increasingly popular and efficient means of transportation used by a lot of people, who may also need a broadband Internet connection while travelling for their business and leisure. Satellite systems for their intrinsic characteristic, such as global coverage, reduced impact of Doppler effect due to link geometry and flexible bandwidth management, represent an excellent solution to provide broadband services in the identified scenario. Some problems specific of the railway propagation channel such as frequent signal outages due to the periodic electrical trellises, tunnels and steel covered bridges affect TCP/IP performance due to frequent packet losses occurring in bursts. In this paper, performance of TCP-based applications and error recovery mechanisms are investigated and the use of a new transport protocol named TCP-Noordwijk is introduced. TCP-Noordwijk leverages on a burst transmission and is particularly suited for the harsh satellite links. Results show that TCP-Noordwijk outperforms the other analyzed TCP versions.","PeriodicalId":137431,"journal":{"name":"2009 International Workshop on Satellite and Space Communications","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"TCP performance on a railway satellite channel\",\"authors\":\"M. Luglio, C. Roseti, G. Savone, F. Zampognaro\",\"doi\":\"10.1109/IWSSC.2009.5286324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-speed rail is emerging in the world as an increasingly popular and efficient means of transportation used by a lot of people, who may also need a broadband Internet connection while travelling for their business and leisure. Satellite systems for their intrinsic characteristic, such as global coverage, reduced impact of Doppler effect due to link geometry and flexible bandwidth management, represent an excellent solution to provide broadband services in the identified scenario. Some problems specific of the railway propagation channel such as frequent signal outages due to the periodic electrical trellises, tunnels and steel covered bridges affect TCP/IP performance due to frequent packet losses occurring in bursts. In this paper, performance of TCP-based applications and error recovery mechanisms are investigated and the use of a new transport protocol named TCP-Noordwijk is introduced. TCP-Noordwijk leverages on a burst transmission and is particularly suited for the harsh satellite links. Results show that TCP-Noordwijk outperforms the other analyzed TCP versions.\",\"PeriodicalId\":137431,\"journal\":{\"name\":\"2009 International Workshop on Satellite and Space Communications\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Workshop on Satellite and Space Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWSSC.2009.5286324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Workshop on Satellite and Space Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSSC.2009.5286324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

高速铁路作为一种越来越受欢迎和高效的交通工具出现在世界各地,许多人在出差和休闲旅行时也可能需要宽带互联网连接。卫星系统的固有特性,如全球覆盖,链路几何形状和灵活的带宽管理减少了多普勒效应的影响,代表了在确定的场景中提供宽带服务的优秀解决方案。铁路传播通道的一些特殊问题,如周期性电网、隧道和钢盖桥造成的频繁信号中断,由于频繁的数据包丢失而影响TCP/IP性能。本文研究了基于tcp的应用程序的性能和错误恢复机制,并介绍了一种名为TCP-Noordwijk的新传输协议的使用。TCP-Noordwijk利用突发传输,特别适用于苛刻的卫星链路。结果表明TCP- noordwijk优于其他分析的TCP版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TCP performance on a railway satellite channel
High-speed rail is emerging in the world as an increasingly popular and efficient means of transportation used by a lot of people, who may also need a broadband Internet connection while travelling for their business and leisure. Satellite systems for their intrinsic characteristic, such as global coverage, reduced impact of Doppler effect due to link geometry and flexible bandwidth management, represent an excellent solution to provide broadband services in the identified scenario. Some problems specific of the railway propagation channel such as frequent signal outages due to the periodic electrical trellises, tunnels and steel covered bridges affect TCP/IP performance due to frequent packet losses occurring in bursts. In this paper, performance of TCP-based applications and error recovery mechanisms are investigated and the use of a new transport protocol named TCP-Noordwijk is introduced. TCP-Noordwijk leverages on a burst transmission and is particularly suited for the harsh satellite links. Results show that TCP-Noordwijk outperforms the other analyzed TCP versions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信