基于图的机器学习算法及其在数据挖掘中的应用

Shimei Jin, Wei Chen, J. Han
{"title":"基于图的机器学习算法及其在数据挖掘中的应用","authors":"Shimei Jin, Wei Chen, J. Han","doi":"10.1109/ICRCICN.2017.8234519","DOIUrl":null,"url":null,"abstract":"Machine learning is widely used in various applications such as data mining, computer vision, and bioinformatics owing to the explosion of available data. However, in practice, many data have some missing attributes. The graphic theory serves as a powerful tool for modeling and analyzing many such practical problems, such as networks of communication and data organization. This paper focuses on semi-supervised learning algorithms based on the graph theory, aiming at establishing robust models in the input space with a very limited number of training samples. The use of such algorithm in multiple data mining applications is also discussed.","PeriodicalId":166298,"journal":{"name":"2017 Third International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Graph-based machine learning algorithm with application in data mining\",\"authors\":\"Shimei Jin, Wei Chen, J. Han\",\"doi\":\"10.1109/ICRCICN.2017.8234519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning is widely used in various applications such as data mining, computer vision, and bioinformatics owing to the explosion of available data. However, in practice, many data have some missing attributes. The graphic theory serves as a powerful tool for modeling and analyzing many such practical problems, such as networks of communication and data organization. This paper focuses on semi-supervised learning algorithms based on the graph theory, aiming at establishing robust models in the input space with a very limited number of training samples. The use of such algorithm in multiple data mining applications is also discussed.\",\"PeriodicalId\":166298,\"journal\":{\"name\":\"2017 Third International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Third International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRCICN.2017.8234519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Third International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRCICN.2017.8234519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于可用数据的爆炸式增长,机器学习被广泛应用于数据挖掘、计算机视觉和生物信息学等各种应用中。然而,在实践中,许多数据都有一些缺失的属性。图形理论是建模和分析许多此类实际问题的有力工具,例如通信网络和数据组织。本文主要研究基于图论的半监督学习算法,目的是在训练样本数量非常有限的输入空间中建立鲁棒模型。本文还讨论了该算法在多种数据挖掘应用中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graph-based machine learning algorithm with application in data mining
Machine learning is widely used in various applications such as data mining, computer vision, and bioinformatics owing to the explosion of available data. However, in practice, many data have some missing attributes. The graphic theory serves as a powerful tool for modeling and analyzing many such practical problems, such as networks of communication and data organization. This paper focuses on semi-supervised learning algorithms based on the graph theory, aiming at establishing robust models in the input space with a very limited number of training samples. The use of such algorithm in multiple data mining applications is also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信