基于DCA的多级小故障诊断

F. Zhou, Tianhao Tang, Chenglin Wen
{"title":"基于DCA的多级小故障诊断","authors":"F. Zhou, Tianhao Tang, Chenglin Wen","doi":"10.1109/ICCT.2008.4716084","DOIUrl":null,"url":null,"abstract":"To diagnose multiple faults of multivariate system, DCA (designated component analysis) is introduced to avoid the pattern compounding problem of PCA (principal component analysis). In this paper and a DCA based multi-level small fault diagnosis method is developed for multiple faults diagnosis when small faults are involved in the system. Simulation for observation data involved 4 faults shows its efficiency.","PeriodicalId":259577,"journal":{"name":"2008 11th IEEE International Conference on Communication Technology","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"DCA based multi-level small fault diagnosis\",\"authors\":\"F. Zhou, Tianhao Tang, Chenglin Wen\",\"doi\":\"10.1109/ICCT.2008.4716084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To diagnose multiple faults of multivariate system, DCA (designated component analysis) is introduced to avoid the pattern compounding problem of PCA (principal component analysis). In this paper and a DCA based multi-level small fault diagnosis method is developed for multiple faults diagnosis when small faults are involved in the system. Simulation for observation data involved 4 faults shows its efficiency.\",\"PeriodicalId\":259577,\"journal\":{\"name\":\"2008 11th IEEE International Conference on Communication Technology\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 11th IEEE International Conference on Communication Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCT.2008.4716084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 11th IEEE International Conference on Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCT.2008.4716084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

为了对多变量系统进行多故障诊断,引入了指定成分分析(DCA),避免了主成分分析(PCA)的模式复合问题。针对系统存在小故障时的多故障诊断问题,提出了一种基于DCA的多级小故障诊断方法。对包含4个故障的观测数据进行了仿真,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DCA based multi-level small fault diagnosis
To diagnose multiple faults of multivariate system, DCA (designated component analysis) is introduced to avoid the pattern compounding problem of PCA (principal component analysis). In this paper and a DCA based multi-level small fault diagnosis method is developed for multiple faults diagnosis when small faults are involved in the system. Simulation for observation data involved 4 faults shows its efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信