基于ResNet-DNN的FBMC/OQAM系统信道估计与均衡方案

Xing Cheng, Dejun Liu, Zhengyu Zhu, Wenzhe Shi, Y. Li
{"title":"基于ResNet-DNN的FBMC/OQAM系统信道估计与均衡方案","authors":"Xing Cheng, Dejun Liu, Zhengyu Zhu, Wenzhe Shi, Y. Li","doi":"10.1109/WCSP.2018.8555649","DOIUrl":null,"url":null,"abstract":"Due to the intrinsic imaginary interference among subcarriers, the channel estimation problem has become one of the main difficulties of the filter bank multicarrier (FBMC) systems. In this paper, we propose a novel channel estimation scheme based on residual networks (ResNet)-deep neural networks (DNN), called as Res-DNN scheme, for the FBMC systems. In the Res-DNN scheme, the conventional channel estimation and equalization module and the demapping module are replaced by a Res-DNN model of deep learning. Simulation results show that the channel estimation performance of the Res-DNN scheme is greatly superior to other schemes in terms of bit error rate (BER).","PeriodicalId":423073,"journal":{"name":"2018 10th International Conference on Wireless Communications and Signal Processing (WCSP)","volume":"4576 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"A ResNet-DNN based Channel Estimation and Equalization Scheme in FBMC/OQAM Systems\",\"authors\":\"Xing Cheng, Dejun Liu, Zhengyu Zhu, Wenzhe Shi, Y. Li\",\"doi\":\"10.1109/WCSP.2018.8555649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the intrinsic imaginary interference among subcarriers, the channel estimation problem has become one of the main difficulties of the filter bank multicarrier (FBMC) systems. In this paper, we propose a novel channel estimation scheme based on residual networks (ResNet)-deep neural networks (DNN), called as Res-DNN scheme, for the FBMC systems. In the Res-DNN scheme, the conventional channel estimation and equalization module and the demapping module are replaced by a Res-DNN model of deep learning. Simulation results show that the channel estimation performance of the Res-DNN scheme is greatly superior to other schemes in terms of bit error rate (BER).\",\"PeriodicalId\":423073,\"journal\":{\"name\":\"2018 10th International Conference on Wireless Communications and Signal Processing (WCSP)\",\"volume\":\"4576 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 10th International Conference on Wireless Communications and Signal Processing (WCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCSP.2018.8555649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 10th International Conference on Wireless Communications and Signal Processing (WCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSP.2018.8555649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

由于子载波间存在固有虚干扰,信道估计问题已成为滤波器组多载波(FBMC)系统的主要难点之一。在本文中,我们提出了一种新的基于残差网络(ResNet)-深度神经网络(DNN)的信道估计方案,称为Res-DNN方案。在Res-DNN方案中,用深度学习的Res-DNN模型取代了传统的信道估计与均衡模块和解映射模块。仿真结果表明,Res-DNN方案的信道估计性能在误码率(BER)方面明显优于其他方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A ResNet-DNN based Channel Estimation and Equalization Scheme in FBMC/OQAM Systems
Due to the intrinsic imaginary interference among subcarriers, the channel estimation problem has become one of the main difficulties of the filter bank multicarrier (FBMC) systems. In this paper, we propose a novel channel estimation scheme based on residual networks (ResNet)-deep neural networks (DNN), called as Res-DNN scheme, for the FBMC systems. In the Res-DNN scheme, the conventional channel estimation and equalization module and the demapping module are replaced by a Res-DNN model of deep learning. Simulation results show that the channel estimation performance of the Res-DNN scheme is greatly superior to other schemes in terms of bit error rate (BER).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信