高精度六边形网格上的矩形热方程隐式逼近方法

S. C. Buranay, N. Arshad
{"title":"高精度六边形网格上的矩形热方程隐式逼近方法","authors":"S. C. Buranay, N. Arshad","doi":"10.1063/5.0042186","DOIUrl":null,"url":null,"abstract":"A two layer Implicit method on hexagonal grids is proposed for approximating the solution to first type boundary value problem of heat equation on rectangle. It is proven that the given implicit scheme is unconditionally stable and converges to the exact solution on the grids of order O(h4+τ2) where, h and 32h are the step sizes in space variables x1 and x2 respectively and τ is the step size in time. The method is applied on a test results.","PeriodicalId":282720,"journal":{"name":"FOURTH INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2020)","volume":"37 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implicit method of high accuracy on hexagonal grids for approximating the solution to heat equation on rectangle\",\"authors\":\"S. C. Buranay, N. Arshad\",\"doi\":\"10.1063/5.0042186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A two layer Implicit method on hexagonal grids is proposed for approximating the solution to first type boundary value problem of heat equation on rectangle. It is proven that the given implicit scheme is unconditionally stable and converges to the exact solution on the grids of order O(h4+τ2) where, h and 32h are the step sizes in space variables x1 and x2 respectively and τ is the step size in time. The method is applied on a test results.\",\"PeriodicalId\":282720,\"journal\":{\"name\":\"FOURTH INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2020)\",\"volume\":\"37 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FOURTH INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2020)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0042186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FOURTH INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2020)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0042186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对矩形热方程第一类边值问题,提出了一种六边形网格上的两层隐式逼近方法。证明了所给出的隐式格式是无条件稳定的,并收敛于O(h4+τ2)阶网格上的精确解,其中h和32h分别是空间变量x1和x2上的步长,τ是时间上的步长。将该方法应用于一个试验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implicit method of high accuracy on hexagonal grids for approximating the solution to heat equation on rectangle
A two layer Implicit method on hexagonal grids is proposed for approximating the solution to first type boundary value problem of heat equation on rectangle. It is proven that the given implicit scheme is unconditionally stable and converges to the exact solution on the grids of order O(h4+τ2) where, h and 32h are the step sizes in space variables x1 and x2 respectively and τ is the step size in time. The method is applied on a test results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信