基于黎曼度量的最近邻分类器在雷达目标识别中的应用

Meng Jincheng, Yang Wanlin
{"title":"基于黎曼度量的最近邻分类器在雷达目标识别中的应用","authors":"Meng Jincheng, Yang Wanlin","doi":"10.1109/RADAR.2005.1435946","DOIUrl":null,"url":null,"abstract":"A successful design for a nearest neighbor classifier based on Riemannian metric in radar target recognition is presented. In Riemannian space, obtaining feature coefficient using subspace methods can be regarded as an affine transformation, and the classifier can be deduced easily from the distance formula in Riemannian space. The classifier is compared with other classifiers and good performance is reported. This design for the classifier may serve as a guideline for dealing with the puzzle that how to combine feature extraction with classifiers reasonably in radar target recognition using range profiles.","PeriodicalId":444253,"journal":{"name":"IEEE International Radar Conference, 2005.","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Nearest neighbor classifier based on Riemannian metric in radar target recognition\",\"authors\":\"Meng Jincheng, Yang Wanlin\",\"doi\":\"10.1109/RADAR.2005.1435946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A successful design for a nearest neighbor classifier based on Riemannian metric in radar target recognition is presented. In Riemannian space, obtaining feature coefficient using subspace methods can be regarded as an affine transformation, and the classifier can be deduced easily from the distance formula in Riemannian space. The classifier is compared with other classifiers and good performance is reported. This design for the classifier may serve as a guideline for dealing with the puzzle that how to combine feature extraction with classifiers reasonably in radar target recognition using range profiles.\",\"PeriodicalId\":444253,\"journal\":{\"name\":\"IEEE International Radar Conference, 2005.\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Radar Conference, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR.2005.1435946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Radar Conference, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2005.1435946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于黎曼度量的雷达目标识别最近邻分类器的成功设计。在黎曼空间中,利用子空间方法获得特征系数可以看作是一种仿射变换,从黎曼空间中的距离公式可以很容易地推导出分类器。将该分类器与其他分类器进行了比较,结果表明该分类器具有良好的性能。该分类器的设计可以为解决利用距离像识别雷达目标时如何将特征提取与分类器合理结合的难题提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nearest neighbor classifier based on Riemannian metric in radar target recognition
A successful design for a nearest neighbor classifier based on Riemannian metric in radar target recognition is presented. In Riemannian space, obtaining feature coefficient using subspace methods can be regarded as an affine transformation, and the classifier can be deduced easily from the distance formula in Riemannian space. The classifier is compared with other classifiers and good performance is reported. This design for the classifier may serve as a guideline for dealing with the puzzle that how to combine feature extraction with classifiers reasonably in radar target recognition using range profiles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信