最优前缀码的空间高效构造

Alistair Moffat, A. Turpin, J. Katajainen
{"title":"最优前缀码的空间高效构造","authors":"Alistair Moffat, A. Turpin, J. Katajainen","doi":"10.1109/DCC.1995.515509","DOIUrl":null,"url":null,"abstract":"Shows that the use of the lazy list processing technique from the world of functional languages allows, under certain conditions, the package-merge algorithm to be executed in much less space than is indicated by the O(nL) space worst-case bound. For example, the revised implementation generates a 32-bit limited code for the TREC distribution within 15 Mb of memory. It is also shown how a second observation-that in large-alphabet situations it is often the case that there are many symbols with the same frequency-can be exploited to further reduce the space required, for both unlimited and length-limited coding. This second improvement allows calculation of an optimal length-limited code for the TREC word distribution in under 8 Mb of memory; and calculation of an unrestricted Huffman code in under 1 Mb of memory.","PeriodicalId":107017,"journal":{"name":"Proceedings DCC '95 Data Compression Conference","volume":"304 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Space-efficient construction of optimal prefix codes\",\"authors\":\"Alistair Moffat, A. Turpin, J. Katajainen\",\"doi\":\"10.1109/DCC.1995.515509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shows that the use of the lazy list processing technique from the world of functional languages allows, under certain conditions, the package-merge algorithm to be executed in much less space than is indicated by the O(nL) space worst-case bound. For example, the revised implementation generates a 32-bit limited code for the TREC distribution within 15 Mb of memory. It is also shown how a second observation-that in large-alphabet situations it is often the case that there are many symbols with the same frequency-can be exploited to further reduce the space required, for both unlimited and length-limited coding. This second improvement allows calculation of an optimal length-limited code for the TREC word distribution in under 8 Mb of memory; and calculation of an unrestricted Huffman code in under 1 Mb of memory.\",\"PeriodicalId\":107017,\"journal\":{\"name\":\"Proceedings DCC '95 Data Compression Conference\",\"volume\":\"304 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings DCC '95 Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.1995.515509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings DCC '95 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1995.515509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

显示了使用函数式语言世界中的延迟列表处理技术,在某些条件下,包合并算法可以在比O(nL)空间最坏情况界所指示的更小的空间中执行。例如,修订后的实现在15 Mb内存内为TREC发行版生成32位限制代码。还展示了如何利用第二个观察结果——在大字母的情况下,通常会有许多具有相同频率的符号——来进一步减少无限编码和长度限制编码所需的空间。第二个改进允许在小于8mb的内存中计算TREC字分布的最佳长度限制代码;以及在1mb内存下计算一个不受限制的霍夫曼码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Space-efficient construction of optimal prefix codes
Shows that the use of the lazy list processing technique from the world of functional languages allows, under certain conditions, the package-merge algorithm to be executed in much less space than is indicated by the O(nL) space worst-case bound. For example, the revised implementation generates a 32-bit limited code for the TREC distribution within 15 Mb of memory. It is also shown how a second observation-that in large-alphabet situations it is often the case that there are many symbols with the same frequency-can be exploited to further reduce the space required, for both unlimited and length-limited coding. This second improvement allows calculation of an optimal length-limited code for the TREC word distribution in under 8 Mb of memory; and calculation of an unrestricted Huffman code in under 1 Mb of memory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信