概率逻辑规划的共代数语义

Tao Gu, F. Zanasi
{"title":"概率逻辑规划的共代数语义","authors":"Tao Gu, F. Zanasi","doi":"10.23638/LMCS-17(2:2)2021","DOIUrl":null,"url":null,"abstract":"Probabilistic logic programming is increasingly important in artificial intelligence and related fields as a formalism to reason about uncertainty. It generalises logic programming with the possibility of annotating clauses with probabilities. This paper proposes a coalgebraic semantics on probabilistic logic programming. Programs are modelled as coalgebras for a certain functor F, and two semantics are given in terms of cofree coalgebras. First, the F-coalgebra yields a semantics in terms of derivation trees. Second, by embedding F into another type G, as cofree G-coalgebra we obtain a `possible worlds' interpretation of programs, from which one may recover the usual distribution semantics of probabilistic logic programming. Furthermore, we show that a similar approach can be used to provide a coalgebraic semantics to weighted logic programming.","PeriodicalId":314387,"journal":{"name":"Log. Methods Comput. Sci.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Coalgebraic Semantics for Probabilistic Logic Programming\",\"authors\":\"Tao Gu, F. Zanasi\",\"doi\":\"10.23638/LMCS-17(2:2)2021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Probabilistic logic programming is increasingly important in artificial intelligence and related fields as a formalism to reason about uncertainty. It generalises logic programming with the possibility of annotating clauses with probabilities. This paper proposes a coalgebraic semantics on probabilistic logic programming. Programs are modelled as coalgebras for a certain functor F, and two semantics are given in terms of cofree coalgebras. First, the F-coalgebra yields a semantics in terms of derivation trees. Second, by embedding F into another type G, as cofree G-coalgebra we obtain a `possible worlds' interpretation of programs, from which one may recover the usual distribution semantics of probabilistic logic programming. Furthermore, we show that a similar approach can be used to provide a coalgebraic semantics to weighted logic programming.\",\"PeriodicalId\":314387,\"journal\":{\"name\":\"Log. Methods Comput. Sci.\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Log. Methods Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23638/LMCS-17(2:2)2021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. Methods Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23638/LMCS-17(2:2)2021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

概率逻辑规划作为一种对不确定性进行推理的形式,在人工智能及相关领域中发挥着越来越重要的作用。它将逻辑规划推广为具有概率注释子句的可能性。本文提出了一种概率逻辑规划的共代数语义。将某函子F的程序建模为协代数,并给出了用无协代数表示的两种语义。首先,f -协代数产生了派生树的语义。其次,通过将F嵌入到另一种类型G中,作为无协G-协代数,我们获得了程序的“可能世界”解释,从中可以恢复概率逻辑规划的通常分布语义。此外,我们证明了一个类似的方法可以用来为加权逻辑规划提供一个共代数语义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coalgebraic Semantics for Probabilistic Logic Programming
Probabilistic logic programming is increasingly important in artificial intelligence and related fields as a formalism to reason about uncertainty. It generalises logic programming with the possibility of annotating clauses with probabilities. This paper proposes a coalgebraic semantics on probabilistic logic programming. Programs are modelled as coalgebras for a certain functor F, and two semantics are given in terms of cofree coalgebras. First, the F-coalgebra yields a semantics in terms of derivation trees. Second, by embedding F into another type G, as cofree G-coalgebra we obtain a `possible worlds' interpretation of programs, from which one may recover the usual distribution semantics of probabilistic logic programming. Furthermore, we show that a similar approach can be used to provide a coalgebraic semantics to weighted logic programming.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信