S. Flögel, I. Ahrns, C. Nuber, M. Hildebrandt, A. Duda, J. Schwendner, D. Wilde
{"title":"一种新型深海履带系统——MANSIO-VIATOR","authors":"S. Flögel, I. Ahrns, C. Nuber, M. Hildebrandt, A. Duda, J. Schwendner, D. Wilde","doi":"10.1109/OCEANSKOBE.2018.8559368","DOIUrl":null,"url":null,"abstract":"The exploration of space and deep-sea environments faces significant similarities. As in space, the exploration and utilization of the deep sea is performed under extreme environmental conditions. Recently, deep sea systems are becoming increasingly autonomous, resulting in challenges that are similar to autonomous space systems such as limited energy supply, communication, as well as navigation system control and failure handling. The analogies between autonomous robotic space and deep-sea technologies motivated the German Helmholtz Association to setup the joint research program ROBEX (Robotic Exploration of Extreme environments). In this research program, scientists and engineers from both domains cooperated to find solutions to similar challenges and to mutually benefit from each other's technologies and capabilities. ROBEX consisted of a consortium of German maritime and space research institutions and was funded from 2012–2017. Within the deep-sea crawler project MANSIO-VIATOR, a consortium of marine and space-related institutes developed a new underwater system uniting the advantages of a fixed sea-floor observatory harboring a mobile crawler component to map and monitor large areas on the seafloor.","PeriodicalId":441405,"journal":{"name":"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A New Deep-Sea Crawler System - MANSIO-VIATOR\",\"authors\":\"S. Flögel, I. Ahrns, C. Nuber, M. Hildebrandt, A. Duda, J. Schwendner, D. Wilde\",\"doi\":\"10.1109/OCEANSKOBE.2018.8559368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The exploration of space and deep-sea environments faces significant similarities. As in space, the exploration and utilization of the deep sea is performed under extreme environmental conditions. Recently, deep sea systems are becoming increasingly autonomous, resulting in challenges that are similar to autonomous space systems such as limited energy supply, communication, as well as navigation system control and failure handling. The analogies between autonomous robotic space and deep-sea technologies motivated the German Helmholtz Association to setup the joint research program ROBEX (Robotic Exploration of Extreme environments). In this research program, scientists and engineers from both domains cooperated to find solutions to similar challenges and to mutually benefit from each other's technologies and capabilities. ROBEX consisted of a consortium of German maritime and space research institutions and was funded from 2012–2017. Within the deep-sea crawler project MANSIO-VIATOR, a consortium of marine and space-related institutes developed a new underwater system uniting the advantages of a fixed sea-floor observatory harboring a mobile crawler component to map and monitor large areas on the seafloor.\",\"PeriodicalId\":441405,\"journal\":{\"name\":\"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANSKOBE.2018.8559368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANSKOBE.2018.8559368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The exploration of space and deep-sea environments faces significant similarities. As in space, the exploration and utilization of the deep sea is performed under extreme environmental conditions. Recently, deep sea systems are becoming increasingly autonomous, resulting in challenges that are similar to autonomous space systems such as limited energy supply, communication, as well as navigation system control and failure handling. The analogies between autonomous robotic space and deep-sea technologies motivated the German Helmholtz Association to setup the joint research program ROBEX (Robotic Exploration of Extreme environments). In this research program, scientists and engineers from both domains cooperated to find solutions to similar challenges and to mutually benefit from each other's technologies and capabilities. ROBEX consisted of a consortium of German maritime and space research institutions and was funded from 2012–2017. Within the deep-sea crawler project MANSIO-VIATOR, a consortium of marine and space-related institutes developed a new underwater system uniting the advantages of a fixed sea-floor observatory harboring a mobile crawler component to map and monitor large areas on the seafloor.