K. Abdulrahman, Rasheedat Modupe Mahamood, E. Akinlabi
{"title":"增材制造(AM)","authors":"K. Abdulrahman, Rasheedat Modupe Mahamood, E. Akinlabi","doi":"10.4018/978-1-7998-7864-3.ch002","DOIUrl":null,"url":null,"abstract":"The need for less weight and high-performance materials in manufacturing industries has continuously led to the development of lightweight materials through the use of advanced additive manufacturing (AM). The race of lightweight and high-performance metals continue to evolve as this continuously provides better understanding about connection existing between material processing, microstructural development, and material properties. AM technique is an interesting manufacturing process that is employed in production of engineering components with improved properties. The choice of titanium and its alloys in structural applications are attributed to their superior strength-to-weight ratio and high corrosion resistance. This chapter looked at different additive manufacturing (AM) techniques developed for the processing of lightweight metals, their strengths, and limitations. The chapter also looked at the role and contribution of AM to the 4th industrial revolution, processing, and application of titanium aluminide for high temperature applications.","PeriodicalId":170776,"journal":{"name":"Handbook of Research on Advancements in the Processing, Characterization, and Application of Lightweight Materials","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Additive Manufacturing (AM)\",\"authors\":\"K. Abdulrahman, Rasheedat Modupe Mahamood, E. Akinlabi\",\"doi\":\"10.4018/978-1-7998-7864-3.ch002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The need for less weight and high-performance materials in manufacturing industries has continuously led to the development of lightweight materials through the use of advanced additive manufacturing (AM). The race of lightweight and high-performance metals continue to evolve as this continuously provides better understanding about connection existing between material processing, microstructural development, and material properties. AM technique is an interesting manufacturing process that is employed in production of engineering components with improved properties. The choice of titanium and its alloys in structural applications are attributed to their superior strength-to-weight ratio and high corrosion resistance. This chapter looked at different additive manufacturing (AM) techniques developed for the processing of lightweight metals, their strengths, and limitations. The chapter also looked at the role and contribution of AM to the 4th industrial revolution, processing, and application of titanium aluminide for high temperature applications.\",\"PeriodicalId\":170776,\"journal\":{\"name\":\"Handbook of Research on Advancements in the Processing, Characterization, and Application of Lightweight Materials\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Handbook of Research on Advancements in the Processing, Characterization, and Application of Lightweight Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-7998-7864-3.ch002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of Research on Advancements in the Processing, Characterization, and Application of Lightweight Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-7998-7864-3.ch002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The need for less weight and high-performance materials in manufacturing industries has continuously led to the development of lightweight materials through the use of advanced additive manufacturing (AM). The race of lightweight and high-performance metals continue to evolve as this continuously provides better understanding about connection existing between material processing, microstructural development, and material properties. AM technique is an interesting manufacturing process that is employed in production of engineering components with improved properties. The choice of titanium and its alloys in structural applications are attributed to their superior strength-to-weight ratio and high corrosion resistance. This chapter looked at different additive manufacturing (AM) techniques developed for the processing of lightweight metals, their strengths, and limitations. The chapter also looked at the role and contribution of AM to the 4th industrial revolution, processing, and application of titanium aluminide for high temperature applications.